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Abstract
We compute the (stable) étale cohomology of Homn(C ,P (λ⃗)), the moduli

stack of degree n morphisms from a smooth projective curve C to the weighted
projective stack P (λ⃗), the latter being a stacky quotient defined by P (λ⃗) :=
�

AN+1 − {0}/Gm

�

, where Gm acts by weights λ⃗ = (λ0, · · · ,λN ) ∈ ZN
+ . Our

key ingredient is formulating and proving the étale cohomological descent
over the category∆S, the symmetric (semi)simplicial category. An immediate
arithmetic consequence is the resolution of the geometric Batyrev–Manin type
conjecture for weighted projective stacks over global function fields. Along
the way, we also analyze the intersection theory on weighted projectivizations
of vector bundles on smooth Deligne–Mumford stacks.

1 Introduction

Fix a base field K and let C/K be a smooth, projective and geometrically con-
nected curve of genus g. The moduli space of morphisms of degree n from C
to the projective space PN , sometimes dubbed as a Hom-space and denoted by
Homn(C ,PN ), has been studied extensively for decades, using techniques ranging
from scanning maps in the case of K = C with the Euclidean topology (see e.g.
[Segal, CCMM, KS]), to more algebraic approaches in the setting of more general
base fields (see e.g. [FW16, Banerjee] and the references therein).

In this paper, we consider a generalization: what if we replace the target space
by a weighted projective stack?

To elaborate, given a vector λ⃗ = (λ0, . . . ,λN ) of positive weights λi ∈ Z+, we
define the N -dimensional weighted projective stack

P (λ⃗) := [(AN+1
x0,...,xN

\ 0)/Gm]

where ζ ∈ Gm acts by ζ · (x0, . . . , xN ) = (ζλ0 x0, . . . ,ζλN xN ). Now consider the
Hom-stack of degree n ∈ Z+ morphisms from C to P (λ⃗), which is defined as:

Homn(C ,P (λ⃗)) :=
�

f : C →P (λ⃗) : f ∗OP (λ⃗)(1) ∈ PicnC
	

=
¦

�

L, [s0 : . . . : sN]
�

: L ∈ PicnC , si ∈ H0(C , L⊗λi),

s0, . . . , sN have no common zeroes
©

/Gm
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where Gm acts on the i th component H0(C , L⊗λi) by weight λi. The Hom-stack
Homn(C ,P (λ⃗)) is a Deligne–Mumford stack by [Olsson, Theorem 1.1].

The case of P (4, 6) is of special interest1: noting that the stackM 1,1 of stable
genus 1 curves is isomorphic toP (4, 6), one has that Homn(C ,P (4, 6)) is a moduli
stack of stable elliptic fibrations over C (see Corollary 1.5).

Our goal in this paper is to study the ℓ-adic cohomology of the space Homn(C ,P (λ⃗)).
To avoid problems with non-tame stabilizers, we henceforth assume char K is co-
prime to l.c.m(λ⃗) and that ℓ is a fixed prime that does not equal char K .

Notations: A bit of notation before we state our theorems. For a Deligne-Mumford
stackX over K , we denote the ℓ-adic cohomology group with rational coefficients
by H i(X ;Qℓ) (warning: this is not the étale cohomology with Qℓ coefficients,
see e.g. [GL, Warning 3.2.1.9], or any text on étale cohomology of schemes e.g.
[Milne]); by the same token a sheaf of Qℓ vector spaces is a Zℓ-sheaf F = (Fn)
and

H i(X ;F ) := lim←−H i(X ;Fn)⊗Zℓ Qℓ

(similar to the notations set up in [Milne, Section 19]). Finally, let us denote a
vector space spanned by {a1, . . . , ak} over Qℓ by Qℓ{a1, . . . , ak} and write Gal(K , K)
for the absolute Galois group of K .

Main Theorem 1.1 (Cohomological stability). Let λ0, · · · ,λN ∈ Z+, and let P (λ⃗)
be a weighted projective stack with weights λ⃗ = (λ0, · · · ,λN ). Let C be a smooth
projective curve of genus g. Let N and n be fixed positive integers such that n≥ 2g. Set
n0 := n−2g. Then there exists a second quadrant spectral sequence, which converges
to H∗(Homn(C ,P (λ⃗));Qℓ) as an algebra, which has the following description. The

E2 term is a bigraded algebra that collapses on E−p,q
2

�

�

�

p≤n0

. Furthermore, E−p,q
2

�

�

�

p≤n0

is

a quotient of the graded commutative Qℓ-algebra

H∗(J(C);Qℓ)[h]/hN ⊗∧Qℓ{t} ⊗ SymQℓ{α1, . . . ,α2g},

where H i(J(C);Qℓ) has degree (0, i), h has degree (0,2), t has degree (−1, 2N + 2)
and αi has degree (−1, 2N+1) for all i, modulo elements of degree (−i, j)with i > n0.
Furthermore, the eigenvalues of the action of Gal(K , K) on Qℓ{α1, . . . ,α2g} are pure
of weight 2N + 1; Qℓ{t} ∼=Qℓ(−(N + 1)) and h is a generator of Qℓ(−1).

The special case of rational curve C = P1 deserves a mention in its own right:

Theorem 1.2. Let n be a positive integer. Then

H∗(Homn(P1,P (λ⃗));Qℓ)∼=
Qℓ[h]

hN
⊗∧Qℓ{t}

where h has cohomological degree 2 and is a generator of Qℓ(−1), and t has coho-
mological degree 2N + 1 and is a generator Qℓ(−(N + 1)). In particular, we have an
isomorphism of Gal(K/K)-representations:

1 See Example 2.3 and Section 5 for other instances of weighted projective stacks of interests.
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H i(Homn(P1,P (λ⃗));Qℓ) =







Qℓ(− j) i = 2 j, 0≤ j ≤ N − 1

Qℓ(−( j + 1)) i = 2 j + 1, N ≤ j ≤ 2N − 1

0 otherwise.

The ℓ-adic étale cohomology with Frobenius weights of the Hom-stack naturally
gives the following weighted point count of Homn(C ,P (λ⃗)) over a finite field Fq

via the Grothendieck-Lefschetz trace formula for Artin stacks (c.f. [Behrend, Sun]).

Theorem 1.3. Let Homn(C ,P (λ⃗)) be the Hom stack of degree n ≥ 2g morphisms
from a smooth projective genus g curve C to the N-dimensional weighted projective

stack P (λ⃗) = P (λ0, . . . ,λN ) with |λ⃗| :=
N
∑

i=0
λi. Then the weighted point count of

Homn(C ,P (λ⃗)) over Fq with char(Fq) ∤ λi ∈ Z+ for every i is a finite sum given by

#q

�

Homn(C ,P (λ⃗))
�

= q|λ⃗|n+N−N g + a 1
2
· q|λ⃗|n+N−N g− 1

2 + a1 · q|λ⃗|n+N−N g−1+

. . .+ ai · q|λ⃗|n+N−N g−i + . . .

where i ∈ Z+[
1
2], the coefficients ai for i < n − 2g are independent of n, and for

i ≥ n− 2g we have ai · q|λ⃗|n+N−N g−i ≪ q|λ⃗|n+N−N g .

In the case of rational curve C = P1, the above exact étale cohomology gives
us the exact weighted point count of Homn(P1,P (λ⃗)) over a finite field Fq. We
remark that the same arithmetic result was accomplished in [HP2, Proposition
4.5] via using motives in K0(StckK), the Grothendieck ring of K-stacks of [Ekedahl].

Theorem 1.4. Let Homn(P1,P (λ⃗)) be the Hom stack of degree n ≥ 1 morphisms
from a smooth projective line P1 to the N-dimensional weighted projective stackP (λ⃗) =

P (λ0, . . . ,λN ) with |λ⃗| :=
N
∑

i=0
λi. Then the weighted point count of Homn(P1,P (λ⃗))

over Fq with char(Fq) ∤ λi ∈ Z+ for every i is equal to

#q

�

Homn(P1,P (λ⃗))
�

=

�

N
∑

i=0
qi

�

·
�

q|λ⃗|n − q|λ⃗|n−N
�

= q|λ⃗|n−N ·
�

q2N + · · ·+ qN+1 − qN−1 − · · · − 1
�

This result, in particular, effectively answers the geometric Batyrev–Manin type
conjecture (the enumeration of rational points of bounded height on varieties over
global fields, see [BM]) on weighted projective stacks over global function fields.

As mentioned earlier, M 1,1 is of special interest; the Deligne–Mumford stack
M 1,1 of stable elliptic curves is isomorphic to P (4, 6) over Spec(Z[1/6]) (c.f. Ex-
ample 2.3). Consequently, the Hom stack Homn(C ,P (4, 6)) over char(K) ̸= 2, 3 is
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isomorphic to the moduli stackL12n,g of stable elliptic fibrations with a section and
12n nodal singular fibers over the parameterized smooth projective base curve CK

of genus g (for further details on the formulation of the moduli stack as Hom-stack
we refer to [HP, §3] and [Park–Schmitt, §1]).

Corollary 1.5. LetL12n,g be the moduli stack of stable elliptic fibrations with a section
and discriminant degree 12n over the parameterized smooth projective basecurve CFq

of genus g. If char(Fq) ̸= 2, 3 and n ≥ 2g, then the weighted point count of L12n,g

over Fq is the finite sum

#q

�

L12n,g

�

= q10n+1−g + a 1
2
· q10n+1−g− 1

2 + a1 · q10n+1−g−1 + . . .+ ai · q10n+1−g−i + · · ·

where i ∈ Z+[
1
2], the coefficients ai for i < n − 2g are independent of n, and for

i ≥ n− 2g we have ai · q10n+1−g−i ≪ q10n+1−g .

Remark 1.6. Recall that the weighted point count ofL12n,g gives the same number
as that of the moduli of semistable elliptic surfaces (c.f. [HP, Proposition 11]).
Consequently, we have an estimate of the counting function

N (Fq(C), 0< q12n ≤ B),

which counts the number of semistable (i.e., strictly multiplicative reductions) el-
liptic curves over the parameterized smooth projective genus g basecurve CFq

or-
dered by height of discriminant 0< ht(∆) = q12n ≤ B for n≥ 2g as :

N (Fq(C), 0< q12n ≤ B) =

j

logqB
12

k

∑

n=1

2 ·#q

�

L12n,g

�

= 2 ·
(q11−g − q9−g)
(q10 − 1)

· B
5
6 + o(B

5
6 )

where the factor of 2 comes from the hyperelliptic involution.

This result, in particular, effectively answers the geometric Shafarevich’s con-
jecture (the enumeration of families of algebraic curves (or abelian varieties) with
bounded bad reductions over global fields, see [Shafarevich]) on counting semistable
elliptic curves over global function fields Fq(C) with char(Fq) ̸= 2,3 ordered by
bounded height of discriminant.

Methods

The central technique in our cohomology computation follows the method behind
the main theorem of [Banerjee]. We construct a suitable ∆S object in the cate-
gory of Deligne-Mumford stacks, which is a simplicial object enjoying additional
properties, whose homotopy colimit is the resultant 0 locus

Z :=
�

f : C →P (λ⃗) : f ∗OP (λ⃗)(1) ∈ PicnC
	

=
¦

�

L, [s0 : . . . : sN]
�

: L ∈ PicnC , si ∈ H0(C , L⊗λi),

s0, . . . , sN have at least one common zero
©

/Gm
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This category ∆S, called the symmetric simplicial category, is a small category
defined by Fiederowicz and Loday in [FL]. It contains∆ as a subcategory, its objects
are that of∆ and it enjoys much of the key properties of∆ (being equipped with a
natural concept of face and degeneracy maps, all compatible with those in ∆, and
sometimes a better substitute for∆ for simplicial techniques in topology - evidence
at hand is Theorem 1.1). Among other things, category∆S naturally diminishes all
the combinatorial complexities that come with ∆ owing to extra automorphisms
of its objects; it gives a natural Koszul-type resolution in the (derived) category
of constructible ℓ-adic sheaves on Z and that in turn computes the desired ℓ-adic
cohomology of the Hom-stack.

It should be highlighted here that whereas cohomological descent for schemes
has been well studied in the pioneering work of Deligne ([Deligne]), the translation
of it to the world of algebraic stacks is technically much more involved (see [LO]
and the references therein); in fact, it is only within the∞-categorical framework
that a satisfactory notion of cohomological descent was formulated and proved in
the illuminating work of Liu and Zheng ([LZ]). For our purposes, we do not need
the full power of [LZ]; we can sidestep the stacky difficulties by proving a statement
that exploits representability in algebraic spaces and the concept of proper descent
on them (see Lemma 4.2 for a precise statement and its proof).

Context and connection to other works.

• Arithmetic statistics: In the grand scheme of things, this paper is along an
interesting connection between the Batyrev–Manin and the Shafarevich con-
jectures in some very special cases. That is, understanding the arithmetic of
rational points on moduli stacks of curves (or abelian varieties) over global
fields has direct implications to the enumerations of fibrations of curves (or
abelian varieties) over global fields. In a similar regard, the inspiring re-
cent work of [ESZB] initiated the program of understanding the connection
between the Batyrev–Manin’s conjecture to the [Malle]’s conjecture (the enu-
meration of number fields of bounded discriminant). Over global function
fields, counting semistable elliptic surfaces over P1

Fq
has been first addressed

in [de Jong]; he worked directly with the generalized Weierstrass equations,
which works even in characteristic 2 and 3 (unlike our method). Works like
[HP] and [Park–Spink] have similar enumerations over char(K) ̸= 2, 3 via
using motives in K0(StckK), the Grothendieck ring of K-stacks introduced by
[Ekedahl] in 2009.

The attractive feature of our enumeration result is its distinctive homotopy
theoretic flavour (that techniques of homological stability can be used to re-
solve geometric Manin’s conjecture has been proposed by Ellenberg-Venkatesh,
see [EV]). In comparison to prior work of similar nature, the strength in our
paper lies in taking colimits over the symmetric simplicial category∆S (which
contains ∆ as a subcategory, see [Banerjee]) one gets considerable control
over technical difficulties like the class groups being nontrivial in the case of
global function fields of higher genera. Furthermore, the central theorem of
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our paper - étale cohomological stability, is intrinsically stronger than point
count asymptotics.

On a related note, the number of discriminants≤ B of an elliptic curve over Z
with smooth generic fiber is estimated to be asymptotic to B

5
6 by [BMc]. The

lower order term of order B(7−
5
27+ε)/12 for counting the stable elliptic curves

over Q by the bounded height of squarefree discriminants was suggested by
the work of [Baier], improving upon their previous error term in [BB].

• Étale cohomological stability: Starting with Quillen’s seminal work (see [Quillen]),
homological stability has been central to the study of topology of families of
spaces/ groups, with vast applications. However, the exploration of étale
cohomological stability is relatively new and sparse in the literature. Some
works that address this are, for example, Farb-Wolfson’s work on étale hom-
mological stability of configuration spaces of smooth varieties (see [FW18]),
Ellenberg-Venkatesh-Westerland’s influential work on homological stability
of Hurwitz schemes having a fixed Galois group that satisfy certain condi-
tions (see [EVW]), Banerjee’s work on spaces admitting symmetric semisim-
plicial filtration (see [Banerjee]) etc. As the branched covers of the P1 are
the fibrations with 0-dimensional fibers, the moduli of fibrations f : X → C
on fibered surfaces X over C = P1 (or even for C of higher genus) with
1-dimensional fibers is the next natural case to work on. Additionally, our
method fits many cases: on one hand, for example, our techniques can just as
well be applied to prove étale cohomological stability of the Hom-stack from
higher dimensional smooth projective varieties to P (λ⃗). And in the case of
the domain being of dimension 1, having computed the stable étale coho-
mology of Homn(C ,P (λ⃗)) for any weight vector λ⃗ (see Example 2.3), we
can, for example, make estimates on the number of Fq-points on the moduli
stack of generalized elliptic fibrations with prescribed level structures (anal-
ogous to the work of [HS] via global fields analogy) or multiple markings as
in Section 5.

Outline of the paper

• In Section 2 we review the definition, properties and examples of weighted
projective stacks. We also recall basics on arithmetic of algebraic stacks over
finite fields.

• We present an in depth analysis of the intersection theory in weighted pro-
jective bundles in Section 3. We prove that the weighted projective bundles
formula holds for the Chow ring in Theorem 1.7 as well as for the étale co-
homology in Corollary 3.6.

• We prove Theorem 1.1 in Section 4 using techniques from [Banerjee, Theo-
rem 2].
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• Finally, in Section 5 we show how our methods can be applied similarly to
the moduli stacks of generalized elliptic fibrations with prescribed level struc-
tures or multiple marked points thereby extending the work of [HP] to the
étale cohomological framework of this paper with numerous applications.

Intersection theory of weighted projective bundles

Rational Chow rings of weighted projectivizations of vector bundles over tame Deligne-
Mumford stacks. For this, assume we have a vector bundle E/S and a splitting

E = E0 ⊕ . . .⊕EN ,

for vector bundles Ei. Given a vector λ⃗ of positive integers, we can again form the
weighted projective bundle

PS(E , λ⃗) = [(Tot(E ) \ 0)/Gm]→ S , (1)

where the torus Gm acts on Ei with weight λi.
To state the result for the Chow group of PS(E , λ⃗), we introduce a notion of

twisted Chern classes. For this recall that the (standard) Chern polynomial is given
by

ct(E ) = 1+ t · c1(E ) + t2c2(E ) + . . .

For a vector bundle E splitting into n + 1 summands as above, the Whitney sum
formula implies

ct(E ) =
N
∏

i=0

ct(Ei) .

Given a vector η⃗= (η0, . . . ,ηN ) ∈ ZN+1
>0 of positive integers, we define the η⃗-twisted

Chern polynomial of E as

cη⃗t (E ) =
N
∏

i=0

cηi t(Ei) .

Similarly, an individual Chern class cη⃗j (E ) is defined as the coefficient of t j in this
twisted Chern polynomial. Thinking in terms of the Chern roots of the bundle E ,
the twisted Chern classes correspond to multiplying the Chern roots of the sum-
mand Ei by ηi.

Theorem 1.7. Let S be a smooth Deligne-Mumford stack with a vector bundle E =
⊕N

i=0 Ei and let λ⃗ ∈ ZN+1
≥1 be a vector of positive integers. Let L = lcm(λ⃗) and consider

the vector η⃗= (L/λ0, . . . , L/λN ). Then we have

A∗(PS(E , λ⃗),Qℓ) = A∗(S,Qℓ)[ζ]/(ζN+1 + cη⃗1 (E )ζ
N + . . .+ cη⃗N+1(E )) , (2)

where ζ= L · c1(OPS(E ,λ⃗)(1)).
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2 Preliminaries

We first recall the definition of a weighted projective stack P (λ⃗).

Definition 2.1. Let λ⃗ = (λ0, . . . ,λN ) ∈ ZN+1
≥1 be a vector of N + 1 positive inte-

gers. Consider the affine space Uλ⃗ = A
N+1
x0,...,xN

endowed with the action of Gm with

weights λ⃗, i.e. an element ζ ∈Gm acts by

ζ · (x0, . . . , xN ) = (ζ
λ0 x0, . . . ,ζλN xN ) . (3)

The N -dimensional weighted projective stackP (λ⃗) is then defined as the quotient
stack

P (λ⃗) =
�

(Uλ⃗ \ {0})/Gm

�

.

Remark 2.2. When we wish to emphasize the field K of definition ofP (λ⃗), we use
the notation PK(λ⃗). All weighted projective stacks are smooth. The stack P (λ⃗) is
Deligne–Mumford if and only if all weights λi are prime to the characteristic; in
this case, P (λ⃗) is in fact tame Deligne–Mumford as in [AOV]. Notice that P (1, p)
is not Deligne–Mumford in characteristic p since it has a point with automorphism
group µp which is not formally unramified. When P (λ⃗) is Deligne–Mumford, it
is an orbifold if and only if gcd(λ0, . . . ,λN ) = 1; this is because P (λ⃗) has generic
stabilizer µgcd(λ0,...,λN ).

The natural morphism Uλ⃗ → P (λ⃗) is the total space of the tautological line
bundle OP (λ⃗)(−1) on P (λ⃗). As in the classical case, we denote by OP (λ⃗)(1) the
dual of this line bundle. Under mild condition on the characteristic of the base
field K (i.e. a field K with char(K) does not divide λi ∈ N for every i), various
moduli stacks of curves are isomorphic to weighted projective stacks.

Example 2.3. An example that will play an important role throughout this paper is
the moduli stack of stable elliptic curves. When char(K) ̸= 2, 3, we have an explicit
isomorphism

(M 1,1)K ∼= [(Spec K[a4, a6]− (0, 0))/Gm] =PK(4, 6)

given by the short Weierstrass equation y2 = x3 + a4 x + a6, where ζ · ai = ζiai for
ζ ∈Gm and i = 4, 6. See, e.g., [Hassett, Proposition 3.6].

Similarly, one could consider the stack M 1,1[Γ ] of generalized elliptic curves
with [Γ ]-level structure, introduced in the work of Deligne and Rapoport [DR]
(summarized in [Conrad2, §2] and also in [Niles, §2]) (see Proposition 5.1).

Also, one could consider the stack M 1,m(m − 1) of m-marked (m − 1)-stable
curves of arithmetic genus one formulated originally by the works of [Smyth,
Smyth2] (see Proposition 5.8).

For higher genus curves, we recall the notion of quasi–admissible covers whereby
the general member of C is not an admissible cover of P1 and have been studied
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in depth by [Stankova, §2.4.] as the closest covers to the original families of sta-
ble curves. In this regard, [Fedorchuk] introduced the proper Deligne–Mumford
stack H2g[2g − 1] of quasi-admissible genus g ≥ 2 curves. For the case of monic
odd–degree hyperelliptic curves with a generalized Weierstrass equation y2 =
x2g+1 + a4 x2g−1 + a6 x2g−2 + a8 x2g−3 + · · ·+ a4g+2 we have

H2g[2g − 1]∼=P (4, 6,8, . . . , 4g + 2)

by [Fedorchuk, Proposition 4.2(1)] over char(K) = 0 and by [HP2, Proposition 5.9]
over char(K) > 2g + 1. The g = 2 case by y2 = x5 + a4 x3 + a6 x2 + a8 x + a10 with
H4[3]∼=P (4, 6,8, 10) is of special interest as all genus 2 curves are hyperelliptic.

We recall the definition of weighted Fq–point count of an algebraic stack X .

Definition 2.4. The weighted point count of X over Fq is defined as a sum:

#q(X ) :=
∑

x∈X (Fq)/∼

1
|Aut(x)|

,

whereX (Fq)/∼ is the set of Fq–isomorphism classes of Fq–points ofX (i.e. the set
of non–weighted points ofX over Fq), and we take 1

|Aut(x)| = 0 when |Aut(x)|=∞.

A priori, the weighted point count can be ∞, but when X is of finite type,
then the stratification of X by schemes as in [Behrend, Proof of Lemma 3.2.2]
implies that X (Fq)/ ∼ is a finite set, so that #q(X ) <∞. The weighted point
count #q(X ) is fundamentally algebro-topological under the framework of the Weil
conjectures as it is equal to the alternating sum of trace of geometric Frobenius via
the Grothendieck-Lefschetz trace formula for Artin stacks by [Behrend, Sun]. Lastly,
we show that the étale cohomology over base field Fq inQℓ-coefficient coincide for
the fine moduli stack and its coarse moduli space by following the proof of [Sun,
Proposition 7.3.2].

Lemma 2.5. Let X be a smooth separated tame Deligne–Mumford stack of finite type
over Fq and the coarse moduli map c : X→ X giving the coarse moduli space X . Then
for all i, the pullback map

c∗ : H i
ét(X/Fq

;Qℓ)∼= H i
ét(X/Fq

;Qℓ)

is an isomorphism.

Proof. As X is a smooth separated tame Deligne–Mumford stack of finite type over
Fq, we can cover X by étale charts U such that pull-back of U in X is the quotient
stack of an algebraic space by a finite group [AOV, Theorem 3.2.]. The lemma
follows from the ℓ-adic Leray spectral sequence as in [Behrend, Theorem 1.2.5]
once we have shown that the canonical map Qℓ → Rc∗Qℓ is an isomorphism. It
suffices to show the isomorphism étale locally on X and hence we assume X =
[V/G] for some algebraic space V under the action of finite group G where char(Fq)
does not divide |G|. Let q : V → X be the canonical morphism. Observe that we
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have Qℓ ≃ (q∗Qℓ)G. As both q and c ◦q are finite maps and Q[G] for a finite group
G is a semisimple Q-algebra by the Maschke’s Theorem, we acquire

Rc∗Qℓ ≃ Rc∗(q∗Qℓ)G ≃ ((c ◦ q)∗Qℓ)G ≃Qℓ

■

3 Intersection theory of weighted projective bundles

Many people have studied the cohomology of weighted projective spaces and bun-
dles, starting with [Kawasaki], where the base S is a point. In [Al Amrani] the
author computes the integral cohomology of the coarse moduli space of PS(E , λ⃗)
as a Q-vector space, and its multiplicative structure in case that E splits as a sum
of line bundles and λ⃗ satisfies a certain divisibility condition (with similar results
in étale cohomology). The divisibility condition was later removed in [BFR].

Our proof of the theorem above is independent of the previous work, and pro-
ceeds in two steps: first, in the case where E splits as a sum of line bundles, the
weighted projective bundlePS(E , λ⃗) admits a natural finite cover to a non-weighted
projective bundle. Via the usual projective bundle formula, this suffices to find its
Chow groups. Here we explicitly use that we work with Q-coefficients. In the
second step, we use a splitting theorem to reduce to the first case.

Let S be a smooth Deligne-Mumford stack and let

E =L0 ⊕ · · · ⊕LN/S (4)

be a vector bundle on S decomposing into a direct sum of N + 1 line bundles Li.
We denote by Tot(E )→ S the total space of this vector bundle, with zero section
0 ⊆ Tot(E ). Given a vector λ⃗ = (λ0, . . . ,λN ) of positive integers, there exists an
action of Gm on Tot(E ) locally given by ζ · (s0, . . . , sN ) = (ζλ0s0, . . . ,ζλN sN ). In the
following, we want to study the intersection theory of the weighted projective bundle

PS(E , λ⃗) = [(Tot(E ) \ 0)/Gm]→ S. (5)

This is a (Zariski) locally trivial bundle with fibre P (λ⃗) over S.
To present the answer, let ℓ = lcm(λ⃗) be the least common multiple of the λi,

consider the vector η⃗= (ℓ/λ0, . . . ,ℓ/λN ) and the modified bundle

Eη =L
⊗η0
0 ⊕ · · · ⊕L ⊗ηN

N /S . (6)

Denote by P(Eη)→ S the (unweighted) projective bundle associated to this vector
bundle. Then there exists a natural map

Φ :PS(E , λ⃗)→ P(Eη), [s0 : . . . : sN] 7→ [s
⊗η0
0 : . . . : s⊗ηN

N ] (7)

over S.
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Theorem 3.1. The map Φ is proper, flat and quasi-finite of degree d = ℓN/
∏N

i=0λi

and the pullback
Φ∗ : A∗(P(Eη),Q)→ A∗(PS(E , λ⃗),Q)

induces an isomorphism on the Chow groups with Q-coefficients, whose inverse is
given by 1/d ·Φ∗. In particular, we have

A∗(PS(E , λ⃗),Q) = A∗(S,Q)[ζ]/(ζN+1 + c1(Eη)ζN + . . .+ cN+1(Eη)) , (8)

where ζ= ℓ · c1(OPS(E ,λ⃗)(1)) and where the Chern classes of Eη can be computed as

ci(Eη) = ei(η0c1(L0), . . . ,ηN c1(LN )) ,

with ei the i-th elementary symmetric polynomial.

For the proof, we need some more preparatory results.

Lemma 3.2. Let G be an algebraic group acting on varieties X , Y over K such that
the action on X is transitive and let x0 ∈ X be a K-point with stabilizer Gx0

. Then
there exists a natural isomorphism

f : [X × Y /G]
∼
−→ [Y /Gx0

] (9)

whose inverse is induced by the Gx0
-equivariant map

Y → {x0} × Y ⊆ X × Y .

Proof. To construct f consider the incidence variety

I = {(g, x , y) : g x = x0} ⊆ G × X × Y (10)

Let p : I → X × Y be the projection on the second and third factor. By the as-
sumption on transitivity, the map p is surjective. Moreover, for the action of the
group Gx0

on I given by left-translation on the factor G (and the trivial action on
X , Y ), we claim that p is a principal Gx0

-bundle. An fppf cover of X trivializing this
bundle is given by the projection p : I → X × Y itself.

Indeed, the fibre product F = I ×X×Y I parameterizes tuples (g, g ′, x , y) ∈ G ×
G×X ×Y such that g x = x0, g ′x = x0. Setting eg = g ′ ◦ g−1 ∈ Gx0

this is equivalent
to the data of (g, eg, x , y) such that g x = x0 and such that eg ∈ Gx0

, which defines
a trivial Gx0

-bundle over I as desired.
Now we note that the map ef : I → Y, (g, x , y) 7→ g y is Gx0

-equivariant (with
respect to G0-action on the target induced by its given G-action). Using that p : I →
X × Y is a principal Gx0

-bundle together with the definition of the stack [Y /Gx0
] it

gives rise to a map f : X × Y → [Y /Gx0
]. On the other hand, it is not hard to see

that this map is invariant under the G-action on X × Y and thus factors through
the quotient stack [X × Y /G] via the desired map f : [X × Y /G]→ [Y /Gx0

]. It is
then straightforward to check that the map (10) induces the inverse map of f . ■
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Proposition 3.3. Given a vector λ⃗ ∈ ZN+1
>0 of positive integers, the weighted projective

space P (λ⃗) has Chow group

A∗(P (λ⃗),Q) =Q[ζ]/(ζN+1) ,

where ζ = c1(OP (λ⃗)(1)) is the first Chern class of the bundle OP (λ⃗)(1). Moreover,
the space P (λ⃗) satisfies the Chow-Künneth property, i.e. for any smooth Deligne-
Mumford stack X the natural map

A∗(X ,Q)⊗Q A∗(P (λ⃗),Q)
︸ ︷︷ ︸

=A∗(X ,Q)[ζ]/(ζN+1)

→ A∗(X ×P (λ⃗),Q)

is an isomorphism.

Note that the intersection theory ofP (λ⃗)was studied before in various settings
(see [Kawasaki, Al Amrani, BFR]). We give a self-contained proof in the language
of Chow groups with Q-coefficients, which gives us the additional Chow-Künneth
property that we need later.

Proof of Proposition 3.3. For our proof we want to use the fact that P (λ⃗) has a
cellular decomposition (similar to the concept in [Fulton]), which in our con-
text means a locally closed stratification in stacks which are isomorphic to finite
quotients of affine spaces An. The closures of these strata then form a basis of
A∗(P (λ⃗),Q).

To make this more precise, we first note that for dimension reasons we in-
deed have ζN+1 = 0, so that there is a well-defined map from Q[ζ]/(ζN+1) to
A∗(P (λ⃗),Q). Our goal is to show that this map is surjective and injective.

For the surjectivity, consider the open substack

U0 = {[x0 : . . . : xN] : x0 ̸= 0} ⊆ P (λ⃗)

with complement Z0
∼=P (λ1, . . . ,λN ). Then we have the excision sequence

A∗(Z0,Q)
i∗−→ A∗(P (λ⃗),Q)→ A∗(U0,Q)→ 0 . (11)

By induction (starting with the trivial case N = 0) we have A∗(Z0,Q)∼=Q[ζ]/(ζN+1).
Moreover, sinceZ0 = {x0 = 0} is the zero set of the section x0 of OP (λ⃗)(λ0), we have
that the image of the map i∗ equals the image of (λ0ζ) ·Q[ζ]/(ζN ) ⊆Q[ζ]/(ζN+1).
On the other hand, the open substack U0 is isomorphic to [Gm ×AN/Gm]. Then
observe that the action of Gm on itself of weight λ0 is transitive and the stabilizer
of 1 equals µλ0

. Thus using Lemma 3.2 we have

U0
∼= [AN/µλ0

].

This is a vector bundle over Bµλ0
of rank N and thus its Chow group is isomorphic

to A∗(Bµλ0
,Q) =Q · [Bµλ0

] and hence trivial. Thus the excision sequence (11) has
the form

Q[ζ]/(ζN)
·λ0ζ−−→ A∗(P (λ⃗),Q)→Q→ 0 ,

12



which implies that Q[ζ]/(ζN+1) surjects onto the Chow group of P (λ⃗). For injec-
tivity, note that the kernel of the natural map Q[ζ]→ A∗(P (λ⃗),Q) must contain
the ideal (ζN+1) and thus be of the form (ζm) for some m≤ N +1. However, since
ζN ̸= 0 as it is a zero-cycle of positive degree, the kernel is indeed equal to (ζN+1).

Given the stratification intoU0,Z0 as above, by [BaeSchmitt, Proposition 2.10]
and an inductive argument, the Chow-Künneth property ofP (λ⃗) follows if we can
show the analogous property for U0

∼= [AN/µλ0
]. This amounts to showing that

A∗(X ,Q)∼= A∗(X × [AN/µλ0
],Q).

But again X ×[AN/µλ0
] is a vector bundle over X ×Bµλ0

and thus the Chow groups
of the two spaces agree. On the other hand, the coarse moduli space of X × Bµλ0

agrees with the coarse moduli space |X | of X and since the Chow group with Q-
coefficients can be computed on such a coarse moduli space, we get the desired
chain of isomorphisms

A∗(X × [AN/µλ0
],Q)∼= A∗(X × Bµλ0

,Q)∼= A∗(|X |,Q)∼= A∗(X ,Q) .

■

Proof of Theorem 3.1. Since bothP (E , λ⃗) and P(Eη) are Zariski-locally trivial bun-
dles over S, the properties of the map Φ which are local on the target (proper, flat,
quasi-finite and the degree) can be verified for the trivial base S = Spec(K). Thus
consider the map Φ : P (λ⃗) → PN . The open subsets Ui = {x i ̸= 0} ⊆ PN form a
Zariski cover and the preimage of Ui under Φ is precisely Ui = {si ̸= 0} ⊆ P (λ⃗),
which is isomorphic to [AN/µλi

]. Then we have a diagram

AN

Ui Ui
∼= AN

and the diagonal map AN → AN is the finite, flat map of degree ℓN/
∏

j ̸=i λ j given
by

(s0, . . . , bsi, . . . , sN ) 7→ (s
ℓ/λ0
0 , . . . ,Ôsℓ/λi

i , . . . , sℓ/λN
N ) ,

where the hat indicates that we omit the i-th entry of the vector. Since the map
AN →Ui is of degree λi, this shows all local properties of the map Φ.

Returning to the case of a general base S, it remains to show that Φ∗ is an iso-
morphism with inverse 1/d ·Φ∗. Indeed, once this is established, the presentation
(8) is simply the standard formula for the Chow group of the projective bundle
P(Eη), where in addition we use that the natural line bundle OP(Eη)(1) pulls back
to OPS(E ,λ⃗)(ℓ) under Φ.

To complete the proof, we note that the composition (1/d · Φ∗) ◦ Φ∗ is clearly
equal to the identity by the projection formula (see [Fulton, Example 1.7.4] for the
argument in the case of schemes). This shows that Φ∗ is injective, so we conclude
by proving its surjectivity.
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We begin by noting, that since we have a diagram

PS(E , λ⃗) P(Eη)

S

Φ

π π′

it follows that the image of Φ∗ contains all classes pulled back from S itself. On the
other hand, the natural line bundle OP(Eη)(1) pulls back to OPS(E ,λ⃗)(ℓ), so that the
class

eξ= c1(OPS(E ,λ⃗)(1)) ∈ A1(PS(E , λ⃗),Q)

is likewise contained in the image of Φ∗. We want to show that these two types of
classes generate A∗(PS(E , λ⃗),Q) as a Q-algebra, i.e. that the natural map

ΨS : A∗(S,Q)[eζ]→ A∗(PS(E , λ⃗),Q), α · eζm 7→ π∗(α) · eζm

is surjective. For this, let V ⊆ S be an open substack on which all summands Li

of E are trivial. Then we have π−1(V ) ∼= V × P (λ⃗) is a trivial product over V .
Denoting K = S \ V the complement of V , we have two excision sequences

A∗(π−1(K),Q) A∗(PS(E , λ⃗),Q) A∗(V ×P (λ⃗),Q) 0

A∗(K ,Q)[eζ] A∗(S,Q)[eζ] A∗(V,Q)[eζ] 0

ΨK ΨS ΨV . (12)

Here the bottom row of the diagram is obtained from the excision sequence of
V ⊆ S by tensoring with Q[eζ], which is a right-exact operation. Now we see that
the map ΨV is surjective by Proposition 3.3, whereas the surjectivity of ΨK follows
by Noetherian induction. By the four lemma, it follows that ΨS is surjective, which
finishes the proof. ■

Claim 3.4 (Stacky Leray-Hirsch). Let S be a smooth Deligne-Mumford stack and let
PS(E ) be the weighted projective bundle on S defined as before. Then H∗(PS(E );Qℓ)∼=
H∗(S;Qℓ)⊗H∗(P (λ⃗);Qℓ) as H∗(S;Qℓ)-modules.

Proof. We first observe that the Leray-Hirsch condition is obviously satisfied; i.e.
the elements 1,ζ, · · · ,ζN of H∗(PS(E );Qℓ) in cohomological degrees 0, 2,4, · · · , 2N
restrict to form a basis of the cohomology of the fibre H∗(P (λ⃗);Qℓ). Therefore
in the derived category of ℓ-adic sheaves over S we have a map induced by the
cohomology classes (by the decomposition theorem):

⊕0≤i≤NQℓS[−2i]→ Rπ∗QℓPS(E )

which is in fact an isomorphism thanks to the Leray-Hirsch condition. Now the
claim immediately follows by applying the global section functor to this complex
and taking cohomology. ■
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3.1 Proof of Theorem 1.7

Based on the theorem above, we can now also compute the Chow group of a
weighted projective bundle, where the bundle does not split into line bundles,
but rather into sub-vector bundles of possibly higher ranks.

For the proof, we need a variant of the splitting principle inspired by an
answer of Angelo Vistoli on mathoverflow.

Lemma 3.5. Given a Deligne-Mumford stack S and a vector bundle E on S, there
exists a flat morphism f : bS→ S such that for any morphism W → S the pullback

f ∗ : A∗(W,Q)→ A∗(bS ×S W,Q)

is injective and such that f ∗E splits as a direct sum of line bundles.

Proof. Let P → S be the frame bundle of E , whose fibre over s ∈ S is the set of all
bases of the vector space Es. It carries a natural action of GLr . Let T ⊆ B ⊆ GLr

be the maximal torus and Borel subgroup of GLr , respectively. Then we claim that
the map f : bS = [P/T] → S satisfies the properties of the lemma. Indeed, since
bS over any point s ∈ S parameterizes a basis of Es up to scaling, the pullback E|

bS
naturally splits into line bundles. On the other hand, the map f is the composition
[P/T] → [P/B] → S = [P/GLr] of an affine bundle and a surjective projective
morphism, both of which have injective pullbacks in Chow (which remains true
after base change with W → S). ■

Proof of Theorem 1.7. When the rank of all bundles Ei is 1, the result is precisely
Theorem 3.1. In the more general setting, we can use the fact that the bundles Ei

split into line bundles Zariski locally and repeat the excision sequence arguments
from the proof of Theorem 3.1 to conclude that the Chow group of PS(E , λ⃗) is
generated as a Q-algebra by classes pulled back from S and by the class ζ. In other
words, we have a natural surjection

Ψ : A∗(S,Q)[ζ]→ A∗(PS(E , λ⃗),Q) . (13)

Given f : bS→ S as in Lemma 3.5, we can ensure that all f ∗Ei split into line bundles
(applying the lemma N + 1 times if necessary). Then we can compute the Chow
group of P

bS( f
∗E , λ⃗) =PS(E , λ⃗)×S

bS and have a sequence of maps

A∗(S,Q)[ζ]
Ψ
−→ A∗(PS(E , λ⃗),Q)

f ∗
−→ A∗(PS(E , λ⃗),Q) = A∗(bS,Q)[ζ]/(ζN+1+. . .+ f ∗cη⃗N+1(E ))

with f ∗ injective. It follows that the element

Q = ζN+1 + ζN cη⃗1 (E ) . . .+ cη⃗N+1(E )

must be in the kernel of Ψ. To show that it generates the kernel (as an ideal), note
that the quotient A∗(S,Q)[ζ]/(Q) has a direct sum decomposition

A∗(S,Q)[ζ]/(Q) =
N
⊕

i=0

A∗(S,Q) · ζi (14)
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into N + 1 copies of A∗(S,Q). Let π : PS(E , λ⃗)→ S be the projection to the base,
then we have a linear map

G : A∗(S,Q)[ζ]/(Q)→
N
⊕

i=0

A∗(S,Q),α 7→
�

π∗(Ψ(α) · ζi)
�

i=0,...,N
.

We claim that with respect to the direct sum decomposition (14), the map G is
given by multiplication with a matrix of elements in A∗(S,Q) with entries 1 on
the anti-diagonal, and vanishing entries above this anti-diagonal. Assuming the
claim, the map G is injective (up to reordering it is a triangular base change) and
since it factors via Ψ : A∗(S,Q)[ζ]/(Q)→ A∗(PS(E , λ⃗),Q), the map Ψ must also be
injective. We have already seen it to be surjective, so it is an isomorphism and thus
the theorem is proven.

To show the claim, note that π∗ζ
N = [S], whereas π∗ζ

i = 0 for i < N . It
follows that for an element α=

∑N
j=0α jζ

j in the domain of G (with α j ∈ A∗(S,Q)),
we have that the ith component of G(α) is given by

G(α)i =
N
∑

j=0

π∗(α j · ζ j+i) =
N
∑

j=0

α j · π∗(ζ j+i)
︸ ︷︷ ︸

=0 for j<N−i

.

But as stated before, we have π∗(ζ j+i) = [S] for j = N − i and π∗(ζ j+i) = 0
for j < N − i, which is precisely the shape of the matrix describing G that was
claimed. ■

The weighted projective bundle formula in the rational Chow ring holds in the
ℓ-adic rational étale cohomology ring as well.

Corollary 3.6. Let S be a smooth Deligne-Mumford stack with a vector bundle E =
⊕N

i=0 Ei and let λ⃗ ∈ ZN+1
≥1 be a vector of positive integers. Let L = lcm(λ⃗) and consider

the vector η⃗= (L/λ0, . . . , L/λN ). Then we have

H∗(PS(E , λ⃗),Qℓ) = H∗(S,Qℓ)[ζ]/(ζN+1 + cη⃗1 (E )ζ
N + . . .+ cη⃗N+1(E )) , (15)

where ζ= L · c1(OPS(E ,λ⃗)(1)).

Proof. The rational cohomology of the smooth separated tame Deligne–Mumford
stack is the same as its coarse space by Lemma 2.5. This allows us to use the de-
scription of the cohomology ring of a weighted projective bundle as an algebra over
the cohomology ring of the base as in [BFR, Theorem 6.2] (see also [Al Amrani,
§III]) which are proved via the application of Leray-Hirsch Theorem.

These references finish the case when the bundle E splits as a sum of line bun-
dles. As before we can conclude the general case by applying the splitting principle.
For this, we repeat the arguments of the section above, replacing Chow groups with
cohomology with Qℓ-coefficients. The global shape of the argument is the same,
but we replace various technical sub-claims as follows:
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• For the map f : bS → S on which the pullback of E splits, we take the same
construction f : bS = [P/T] → S as in Lemma 3.5. Again, the pullback in
cohomology via f , which is a composition of an affine bundle and a full flag
bundle, is injective (using the Leray-Hirsch theorem).

• Instead of using excision theorems, the surjectivity of the map

Ψ : H∗(S,Qℓ)[ζ]→ H∗(PS(E , λ⃗),Qℓ),

defined analogously to (13), follows from Claim 3.4. The same claim also
proves thatΨ becomes an isomorphism when dividing its domain by the ideal
generated by Q.

This last statement finishes the proof. ■

4 Stable cohomology of the Hom-stacks with weights

Recall that for a Deligne-Mumford stackX over K , we denote the ℓ-adic cohomol-
ogy group with rational coefficients by H i(X ;Qℓ) (warning: this is not the étale
cohomology with Qℓ coefficients, see e.g. [GL, Warning 3.2.1.9], or any text on
étale cohomology of schemes e.g. [Milne]); by the same token a sheaf of Qℓ vector
spaces is a Zℓ-sheaf F = (Fn) and

H i(X ;F ) := lim←−H i(X ;Fn)⊗Zℓ Qℓ

(similar to the notations set up in [Milne, Section 19].) For brevity and conve-
nience, and noting there is no scope of confusion since we are always working
over rational coefficients, we will write H i(X ) to stand for H i(X ;Qℓ).

For λ⃗= (λ0, · · · ,λN ) ∈ ZN+1
>0 and positive integers a, b, we denote by aλ⃗+ b the

vector (aλ0 + b, aλ1 + b, · · · , aλN + b). Furthermore, given λ⃗ = (λ0, · · · ,λN ) with

|λ⃗| :=
N
∑

i=0
λi and a vector space V := V0⊕· · ·⊕VN of dimension |λ⃗|n+(N+1)−(N+

1)g, we denote by P (⊕Vi, λ⃗) the weighted projective stack where Gm acts on the
direct summand Vi of V by weight λi. If E is a vector bundle on a space X such
that E = E0⊕· · ·⊕EN then byPX (⊕iEi, λ⃗)we denote the weighted projectivization
of E where Gm acts on the sub-bundle Ei by weight λi. Note that when we write
PX (⊕iEi, λ⃗) we implicitly assume that i runs from 0 to N and that λ⃗ ∈ ZN+1

>0 .

4.1 Proof of Main Theorem 1.1

Main Theorem 1.1 (and in turn Theorem 1.2) is a direct consequence of [Banerjee,
Theorem 2]. In particular, we construct an object over ∆S (called the symmetric
simplicial category, see [Banerjee, Definition 2.10]) in the category of (smooth,
proper) Deligne-Mumford stacks.

Now, a degree n morphism C →P (λ⃗) is equivalent to the following data:
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• a line bundle L of degree n on C ,

• an (N + 1)-tuple (s0, . . . , sN ) where si ∈ H0(C , L⊗λi)

• the sections s0, . . . , sN satisfy the condition that they have no common zeroes
(also known as {s0, . . . , sN} is basepoint free).

Then, Homn(C ,P (λ⃗)) is a Zariski open dense subset of H̃omn(C ,P (λ⃗)) defined
by

H̃omn(C ,P (λ⃗)) := {L, [s0 : . . . : sN] : L ∈ Picn(C), si ∈ H0(C , L⊗λi) for all i}.

Note that H̃omn(C ,P (λ⃗)) is isomorphic to the weighted projectivization of a vec-
tor bundle E on Picn(C) (assuming n ≥ 2g) whose fibre over L is given by VL :=
⊕iH

0(C , L⊗λi), where via the Riemann-Roch theorem we have H0(C , L⊗λi)∼= Aλi n−g+1

and Gm acts by weight λi on H0(C , L⊗λi); fibre over L ∈ PicnC isomorphic to the
weighted projective stack P (⊕iH

0(P1,O (n)⊗λi), λ⃗).
More precisely, if

ν : C × PicnC → PicnC

is the projection to the second factor and P(n) denotes a Poincare bundle of degree
n on C × PicnC , then we let Γλi

(n) := ν∗P(n)⊗λi (and when λi = 1 we write Γ (n)).

Then H̃omn(C ,P (λ⃗)) is the weighted projectivization of⊕iΓλi
(n)whereGm acts on

Γλi
(n) by weight λi. By Theorem 1.7 we know the cohomology of H̃omn(C ,P (λ⃗))-

a key player in the proof of Theorem 1.1 as we shall soon see.
Even though the exact cohomology of Theorem 1.2 follows from stable coho-

mology of Theorem 1.1 when we take the curve C to be of genus 0, literature shows
that not only is the genus 0 case worth proving in it’s own right, in this manuscript
it also portrays how the basic strategy of proving the higher genus case is essen-
tially the same as that of the genus 0 case; in other words if the reader understands
the proof of Theorem 1.2, he would know how the proof of Theorem 1.1 works as
well. Keeping this in mind, we first prove Theorem 1.2.

Proof of Theorem 1.2. First observe that H̃omn(P1,P (λ⃗)) is a weighted projective
stack isomorphic to P (⊕iH

0(P1,O (n)λi , λ⃗). Define a symmetric semisimplicial
space (see [Banerjee, Defintion 2.10]) as follows. Let

T0 := P1 ×P (⊕iH
0(P1,O (nλi − 1)), λ⃗) (16)

and let

Tp := (P1)p+1 ×P (⊕iH
0(P1,O (nλi − p)), λ⃗). (17)

Letting T−1 denote H̃omn(P1,P (λ⃗)), we observe that there are natural face
maps (which are finite morphisms of smooth proper Deligne-Mumford stacks)

fi : Tp→Tp−1
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for all p ≥ 0 given by adding a basepoint from the i th factor i.e.

fi : (P1)p+1 ×P (⊕iH
0(P1,O (nλi − (p+ 1)), λ⃗)→ (P1)p ×P (⊕iH

0(P1,O (nλi − p), λ⃗)
�

[a0 : b0], . . . , [ap : bp]
�

, [s0 : . . . : sN] 7→
�

[a0, b0], . . . , ̂[ai : bi], . . . [ap : bp]
�

, [(bi x − ai y)s0 : . . . : (bi x − ai y)sN] (18)

where ̂[ai : bi] denotes removing the i th entry [ai : bi]. In other words, the hyper-
cover under consideration is the following:

· · · (P1)3 ×P (⊕iH
0(P1,O (nλi − 3)), λ⃗)→→→ (P

1)2 ×P (⊕iH
0(P1,O (nλi − 2)), λ⃗)

⇒P1 ×P (⊕iH
0(P1,O (nλi − 1)), λ⃗)→P (⊕iH

0(P1,O (nλi)), λ⃗)

with the unlabelled arrows denoting the face maps fi.
Let Z ⊂ H̃omn(P1,P (λ⃗)) be the “resultant 0 locus" given by

Z = {[s0 : · · · : sN] : si ∈ H0(P1,O (n)⊗λi) for all i = 0, . . . , N ,

s0, . . . , sN have at least one common root}.

Now we make the following observation (an almost immediate consequence of
[Conrad, Theorem 7.1] or [Deligne])):

Claim 4.1. The hypercovering T•→Z is universally of cohomological descent.

To prove it we show a more general lemma:

Lemma 4.2. Let π• : T• →Z be a proper hypercovering in the category of Deligne-
Mumford stacks, with the étale topology, such that for all p, and a morphism

x : Spec K →Tp

the kernel IsomTp
(x , x)→ IsomZ (x , x) is trivial, then it is universally of cohomolog-

ical descent.

Proof of Lemma 4.2. The proof of this lemma follows immediately by noting that
the claim is about étale sheaves on the base Deligne-Mumford stackZ , so it suffices
to check the claim étale locally. Now thanks to [Stacks, Lemma 100.6.2] the face
maps are representable by algebraic spaces, so étale locally we can simply apply
the result for schemes, which is precisely [Conrad, Theorem 7.1]: that a proper
hypercovering in the category of schemes is universally of cohomological descent.

■

Proof of 4.1. In the special case when T• is the specific simplicial space defined
above (4.1) and Z is the resultant 0 locus, the condition in the claim of the kernel
being trivial is clearly satisfied, and thus the observation follows. ■
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Having settled that T•→Z as a semisimplicial space is indeed of cohomological
descent, by virtue of having the additional structure of a∆injS object, (where∆injS
denotes the symmetric semisimplcial category, see [Banerjee]) it further satisfies the
conditions of [Banerjee, Theorem 2] 2 and results in a second quadrant spectral
sequence whose E1 page reads as

E−p,q
1 =



















Hq(P (⊕iH
0(P1,O (nλi)), λ⃗))(0) p = 0,

Hq−2N (P1 ×P (⊕iH
0(P1,O (nλi − 1))(−1) p = 1,

H0(P1)⊗H2(P1)⊗Hq−4N−2(P (⊕iH
0(P1,O (nλi − 2))(−2) p = 2,

0 otherwise,

with the differentials given by the alternating sum of the Gysin pushforwards in-
duced by the face maps, which is what we shall compute now.

• Computing d1,q
1 : E−1,q

1 → E0,q
1 .

For simplicity we denote the differential by d1
1 . Let

ι :P (⊕iH
0(P1,O (nλi − 1)), λ⃗) ,→P (⊕iH

0(P1,O (nλi)), λ⃗)

denote the inclusion given by adding a basepoint.

Choose generators 1 ∈ H0(P1) and e ∈ H2(P1), and let h denote the hyper-
plane class in P (⊕iH

0(P1,O (nλi), λ⃗). Then we claim that:

d1
1 = f0∗ : H∗−2N (P1 ×P (⊕iH

0(P1,O (nλi − 1)), λ⃗))→

H∗(P (⊕iH
0(P1,O (nλi), λ⃗))

1⊗ ι∗α+ e⊗ ι∗β 7→ αhN + βhN+1

is a map of H∗(P (⊕iH
0(P1,O (nλi), λ⃗))-modules, where

α,β ∈ H∗(P (⊕iH
0(P1,O (nλi), λ⃗).

To see this, first note that

ι∗ : H∗(P (⊕iH
0(P1,O (nλi − 1), λ⃗))→ H∗(P (⊕iH

0(P1,O (nλi), λ⃗))

is a surjection; next, the image of the fundamental class

[P1 ×P (⊕iH
0(P1,O (nλi − 1), λ⃗)] ∈ H0(P1 ×P (⊕iH

0(P1,O (nλi − 1), λ⃗))
2In fact one can make a more general statement at no extra cost, simply by translating cohomo-

logical descent to the language of∞-category of ℓ-adic sheaves Shℓ(Z ) (as defined, for example,
by Gaitsgory-Lurie in [GL]) over to the indexing category ∆S, essentially giving an∞-categorical
version of [Banerjee, Lemma 2.11], as follows. Given a S• hypercovering π• : T• → Z satisfying
the conditions of Lemma 4.2, there is an equivalence of endofunctors

id→
�

Rπ•∗π
∗
• ⊗ sgnS•

�S•

in the ∞-category Fun(Shℓ(Z ), Shℓ(Z )), where S• denotes the symmetric simplicial group given
by Sn denoting the symmetric group on (n+ 1) elements. However, we do not need the full power
of this statement in for our immediate computation. The interested reader can refer to [Banerjee2].
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is the locus of elements in P (⊕iH
0(P1,O (nλi), λ⃗) that has a basepoint i.e.

Z , which is rationally equivalent, and thus cohomologous, to (a multiple of)
hN ; and finally, for a fixed point [a : b] ∈ P1, the locus given by

{[s0 : . . . : sN] ∈ P (⊕iH
0(P1,O (nλi), λ⃗) : si([a : b]) = 0}

is rationally equivalent, and in turn cohomologous, to (a multiple of) hN+1.
For the sake of simplicity we won’t bother ourselves with the scalar multiples,
which is fine because we’re working over Q. The Gysin pushforward d1

1 =
f0∗ surjects onto the ideal generated by hN in H∗(P (⊕iH

0(P1,O (nλi, λ⃗)).
Indeed, the preimage of hN+i is given by

d1
1 (1⊗ ι

∗hi) = hN+i = d1
1 (e⊗ ι

∗hi−1) for i ≥ 1,

d1
1 ([P

1 ×P (⊕iH
0(P1,O (nλi − 1), λ⃗)) = hN ,

which shows that the image of d1
1 is the ideal generated by hN in

H∗(P (⊕iH
0(P1,O (nλi), λ⃗)).

The kernel of d1
1 is given by elements of the form ι∗(α)(h − e) for all α ∈

H∗(P (⊕iH
0(P1,O (nλi), λ⃗)).

The upshot is that on the E2 page, for p = 0 we have:

E0,q
2 =

¨

Q(0) q = 2 j, 0≤ j ≤ 2(N − 1)
0 otherwise.

(19)

• Computing d2,q
1 : E−2,q

1 → E−1,q
1 . For simplicity, we denote the differential by

d2
1 . Like before, let ι :P (⊕iH

0(P1,O (nλi −1), λ⃗) ,→P (⊕iH
0(P1,O (nλi), λ⃗)

denote the inclusion given by adding a basepoint, and let h denote the hy-
perplane class inP (⊕iH

0(P1,O (nλi−1), λ⃗). Then the way we computed f0∗
above works verbatim, and we have

f0∗ : H0(P1)⊗H2(P1)⊗H∗−2N−2(P (⊕iH
0(P1,O (nλi − 2)), λ⃗))

→ H∗(P1 ×P (⊕iH
0(P1,O (nλi − 1), λ⃗)

1⊗ e⊗α 7→ e⊗αhN

and

f1∗ : H0(P1)⊗H2(P1)⊗H∗−2N−2(P (⊕iH
0(P1,O (nλi − 2), λ⃗))

→ H∗(P1 ×P (⊕iH
0(P1,O (nλi − 1), λ⃗))

1⊗ e⊗α 7→ 1⊗αhN+1,

and therefore
d2

1 (1⊗ e⊗α) = 1⊗αhN+1 − e⊗αhN .
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Note that d2
1 is injective, and the image is generated by hN in

H∗(P1 ×P (⊕iH
0(P1,O (nλi − 1), λ⃗)).

Consequently, on the E2 page we have:

E−1,q
2 =

¨

Qℓ(−N) p = 1, q = 2 j + 2N + 2, 0≤ j ≤ 2(N − 1)
0 otherwise

,

E−2,q
2 = 0, for all q.

In effect on the E2 page all differentials vanish; the spectral sequence degenerates
and we obtain

H∗(Homn(P1,P (λ⃗));Q)∼=
Q[h]
hN
⊗∧Q{t}

where h has cohomological degree 2, and t (which corresponds to e−h ∈ Ker(d1
1 ))

has cohomological degree 2N + 1. Furthermore, over a field κ, with algebraic
closure κ, we have an isomorphism of Gal(κ/κ)-representations:

H i
ét(Homn(C ,P (λ⃗));Qℓ) =







Qℓ(− j) i = 2 j, 0≤ j ≤ N − 1

Qℓ(−( j + 1)) i = 2 j + 1, N ≤ j ≤ 2N − 1

0 otherwise.

This completes the proof of Theorem 1.2.
■

Following the same plan, we now proof Main Theorem 1.1.

Proof of Theorem 1.1. As already observed above, the space Homn(C ,P (λ⃗)) is open
and dense in H̃omn(C ,P (λ⃗)), and we have

H̃omn(C ,P (λ⃗))∼=PPicnC(⊕iν∗P(n)
⊗λi , λ⃗).

Let Z denote the resultant 0 locus i.e. the complement of Homn(C ,P (λ⃗)) in
H̃omn(C ,P (λ⃗)).

Now we construct a hypercover that is equipped with the additional structure
of a ∆injS object in the category of Deligne-Mumford stacks, and which admits
universal cohomological descent.

To this end, we define spaces T0 andI0 as certain fibre products. First, consider
the following commutative diagram:

22



T0 C ×PΠiPicλi n−1C(⊕iν∗P(λin− 1), λ⃗)

PPicnC(⊕iν∗P(n)⊗λi , λ⃗) PΠiPicλi nC(⊕iν∗P(λin), λ⃗)

I0 C ×ΠiPicλi n−1C

PicnC ΠiPicλi nC

π0

A

A A

⊗λ⃗

where the maps above are defined by:

⊗λ⃗ : PicnC → ΠiPicλi nC

L 7→ (L⊗λ0 , · · · , L⊗λN ) (20)

henceforth often denoting (L⊗λ0 , · · · , L⊗λN ) by L⊗λ⃗;

A : C ×ΠiPicλi n−1C → ΠiPicλi nC
x , (L0, . . . , LN ) 7→ L0 ⊗OC(x), · · · , LN ⊗OC(x) (21)

which is the map of ‘adding a point’:

I0 := Picn ×ΠiPicλi nC (C ×ΠiPicλi n−1C)

completes the commutative square in the ‘lower face’ of the cube and we abuse
notation and still denote the resulting ‘adding a point’ map by A : I0→ PicnC; the
‘upper face’ of the cube consists of spaces which are essentially the space of global
sections of suitable Poincare bundles, i.e. the vertical arrows all correspond to
taking fibrewise global sections over the moduli of line bundles; and T0, quite like
I0, is defined to complete the square on the upper face of the cube, and admits
natural map to I0 so that each of the side faces are also naturally commutative
squares. Whereas the ‘adding a point’ map on the lower face of the cube adds
points to line bundles, on the upper level they effectively add ‘basepoints’ to global
sections; in other words

π0 : T0→PPicnC(⊕iν∗P(n)
⊗λi , λ⃗)

simply captures the notion of adding a basepoint.
We define spaces Tp for all p ≥ 0 likewise. Consider the following commutative

diagram:
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Tp C p+1 ×PΠiPicλi n−(p+1)C(⊕iν∗P(λin− (p+ 1), λ⃗)

PPicnC(⊕iν∗P(n)⊗λi , λ⃗) PΠiPicλi nC(⊕iν∗P(λin), λ⃗)

Ip C p+1 ×ΠiPicλi n−(p+1)C

PicnC ΠiPicλi nC

πp

f1

h

A A

⊗λ⃗

where ⊗λ⃗ is defined like before; A, by abusing notation, now denotes the addition
of (p+ 1) points to a line bundle i.e.

A : C p+1 ×ΠiPicλi n−(p+1)C → ΠiPicλi nC

(x0, . . . , xp), (L0, . . . , LN ) 7→ L0(
∑

x i), · · · , LN (
∑

x i); (22)

and moreover observe that we have commutative cubes of the following form for
all p:

Tp C p+1 ×PΠiPicλi n−(p+1)C(⊕iν∗P(λin− (p+ 1), λ⃗)

Tp−1 C p ×PΠiPicλi n−pC(⊕iν∗P(λin− p, λ⃗)

Ip C p+1 ×ΠiPicλi n−(p+1)C

Ip−1 C p ×ΠiPicλi n−pC

fi

A A

⊗λ⃗

and the all the down-right arrows are maps corresponding to adding a point from
the i th factor of C p+1 i.e.

A : C p+1 ×ΠiPicλi n−(p+1)C → C p ×ΠiPicλi n−pC
(x0, . . . , xp), (L0, . . . , LN ) 7→

(x0, . . . ,Òx i, . . . , xp), (L0(x i), . . . , LN (x i))

where Òx i implies we delete the i th entry; most importantly, we obtain fi : Tp→Tp−1

as the i th face map of the semisimplicial space T•.
It is easy to see that Ip

∼= C p+1 × PicnC for all p ≥ 0: for p = 0 the map

PicnC×iΠiPicλi nC .C ×ΠiPicλi n−1C → C × PicnC
L, (x , (L0, · · · , LN )) 7→ (x , L)

has a natural inverse thereby giving an isomorphism; for higher values of p the
observation follows likewise. Along those lines, it is not hard to show for p ≤
n−2g +1 that Tp

∼= C p+1×PPicnC(⊕iEi,λi) (the isomorphism is not canonical) for
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some sub-vector budnles Ei ⊂ ν∗P(n)⊗λi for each i, of rank λin− g + 1− (p + 1),
in the following way. For any line bundle L on C and any effective divisor D on C
there is a natural injection

H0(C , L)→ H0(C , L(D))
s 7→ s(D)

coming from the short exact sequence of the corresponding locally free sheaves

0→ L→ L(D)→OD→ 0;

by definition we have

Tp := {[s0 : . . . : sN], ((x0, · · · , xp), [es0 : . . . : esN )) : si ∈ H0(C , Lλi) where L ∈ PicnC ,

esi ∈ H0(C , Li) where Li ∈ Picλi n−(p+1)C ,

esi(
∑

x j) = tλi si for some t ∈Gm and for all i}.

Now fix a general unordered (p+ 1) subset {z0, · · · , zp} ∈ C and define

Mp := {[es0 : . . . : esN] : esi ∈ H0(C , Li) where Li ∈ Picλi n−(p+1)C , there exists t ∈Gm

such that for each i, esi(
∑

j

c j) = tλi si,

where si ∈ H0(C , Lλi), L ∈ PicnC}

Then one can define a bijective (easy to check) morphism that only depends on
the choice of the points z0, . . . , zp ∈ C:

C p+1 ×Mp→Tp

(x0, . . . , xp), [es0 : . . . : esN] 7→

[es0(
∑

j

x j) : . . . : esN (
∑

j

x j)], ((x0, · · · , xp), [es0 : . . . : esN]) (23)

where the only non-trivial part is to check that the map is well-defined and that
fact follows from the observation that degree 0 line bundles always have λth roots
for all positive integers λ. Now Mp is naturally a fibre bundle over PicnC , in fact it
is a weighted projectivization of the sub-vector bundle of ⊕ν∗P(n)⊗λi whose fibres
are given by (N + 1)-tuples of sections in ⊕ν∗P(n)⊗λi having common zeroes at
z0, . . . , zp; we denote that sub-vector bundle by ⊕ν∗P(n)

⊗λi
z0+···+zp

. In other words

Mp
∼=PPicnC(⊕iν∗P(n)

⊗λi
z0+···+zp

, λ⃗),

and for all 0≤ p ≤ n−2g +1 we abuse notation and denote the fibre bundle by ρ
i.e.

ρ : Mp→ PicnC .

Deviating from the norm, we setT−1 := H̃omn(C ,P (λ⃗))∼=PPicnC(⊕iν∗P(n)⊗λi , λ⃗))
(whereas the norm would be to set T−1 asZ - this a minor deviation just to simplify
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the notations involved in the subsequent computation). From [Banerjee, Definition
2.1], T• satisfies the conditions of being a ∆S object. We therefore use [Banerjee,
Theorem 1.2] to get a second quadrant spectral sequence that reads as:

E−p,q
1 = Hq−2pN
�

Tp ⊗ sgnp+1

�S(p+1)(−(p+ 1)N) =⇒ Hq+p(Homn(C ,P (λ⃗)).

where sgnp+1 denote the sign action of the symmetric group Sp+1 on the (p + 1)
factors of Tp by permutation; and the differentials of this spectral sequence are
given by the alternating sum of the Gysin pushforwards induced by the face maps.
So we split the rest of the proof into the following parts:

1. Computing the E1 terms. To this end note that a complete understanding of

H∗(PPicnC(⊕iν∗P(n)
⊗λi
z0+···+zp

, λ⃗))

(at least in a stable range) gives us full knowledge of the E1 terms (in that
range). The Chern classes of ν∗P(n)⊗λi can be computed for example, di-
rectly using Grothendieck-Riemann-Roch, or via ad-hoc methods:

ci(Eλi
) = (−1)i

θ i

i!
i = 0, . . . , g

where θ is the fundamental class of the theta divisor (several proofs are
available in [ACGH, Sections 4, 5, Chapter VII and Section 1, Chapter VIII]).
Using the Whitney sum formula we can express the twisted Chern classes in
terms of θ .

In turn, let N0 := (n − g + 1)(N + 1), which is the dimension of the fi-
bres of E → Picn(C), and let h denote the relative hyperplane class i.e.
h = c1(Oρ(1)) ∈ H2(PPicnC(⊕iν∗P(n)⊗λi , λ⃗), then H∗(PPicnC(⊕iν∗P(n)⊗λi , λ⃗),
which is an algebra on H∗(Picn(C))∼= ∧(H1(C)), is given by (using (15)):

H∗(PPicnC(⊕iν∗P(n)
⊗λi , λ⃗)

∼=
H∗(Picn(C))[h]

hN0 +ρ∗cη⃗1 (⊕iν∗P(n)⊗λi , λ⃗)hN0−1 + . . .+ρ∗cη⃗g (⊕iν∗P(n)⊗λi , λ⃗)hN0−g
. (24)

Let p be such that n−p ≥ 2g and let Np := (n−p−g+1)(N+1) = N0−p(N+1),
the dimension of the fibres of PPicnC(⊕iν∗P(n)

⊗λi
z0+···+zp

, λ⃗) → Picn(C), then
combining (15) and (1) we have a complete description of the E1 terms of
the spectral sequence above. We remark here that since n− p ≥ 2g, we have
that Np− g = (n− p− g+1)(N +1)− g ≥ N . This remark will be useful later.

2. Computing the differentials d p
1 : E−p,∗

1 → E−(p−1),∗+2N
1 .

Following previously introduced notations, let h = c1(Oρn
(1)), and for all p

satisfying n− p ≥ 2g, let

ι :PPicnC(⊕iν∗P(n)
⊗λi
z0+···+zp−1

, λ⃗)→PPicnC(⊕iν∗P(n)
⊗λi
z0+···+zp

, λ⃗)
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denote the closed embedding induced by adding a basepoint x (an abuse
of notation that won’t cause any confusion down the way). Note that ι
is fibrewise linear embedding, up to translation of Picn(C) by x . Finally,
let e ∈ H2(C) be the class of a point, 1 the fundamental class of C , and
let γ1, . . . ,γ2g be the standard basis of H1(C) and because H∗(Picn(C)) ∼=
∧H1(C), let γ1, . . . ,γ2g be the image of γ1, . . . ,γ2g under the aforementioned
isomorphism.

First, we observe that

d1
1 : H∗(C ×PPicnC(⊕iν∗P(n)

⊗λi
z0

, λ⃗))→ H∗(PPicnC(⊕iν∗P(n)
⊗λi , λ⃗))

[C ×PPicnC(⊕iν∗P(n)
⊗λi
z0

, λ⃗)] 7→ hN

e 7→ hN+1

γi 7→ γih
N , for all i.

is a map of H∗(PPicnC(⊕iν∗P(n)⊗λi , λ⃗))-modules, and in turn

ι∗α+ eι∗β +
2g
∑

i=1

γiι
∗γi

d1
17−→ αhN + βhN+1 +

2g
∑

i=1

γiγih
N ,

where α,β ,γ1, . . . ,γ2g ∈ H∗(PPicnC(⊕iν∗P(n)⊗λi , λ⃗)). Indeed, the justifica-
tion for the formula for d1

1 in the previous case of C = P1 holds almost ver-
batim here. We know

ι∗ : H∗(PPicnC(⊕iν∗P(n)
⊗λi , λ⃗))→ H∗(PPicnC(⊕iν∗P(n)

⊗λi
z0

, λ⃗))

is a surjection; next, for a fixed point x ∈ C , the image t r
x(PPicnC(⊕iν∗P(n)⊗λi

z0
, λ⃗))

is rationally equivalent, and in turn cohomologous, to (a multiple of) hN+1,
and finally, that the image of the fundamental class [C×PPicnC(⊕iν∗P(n)⊗λi

z0
, λ⃗)] ∈

H0(C ×PPicnC(⊕iν∗P(n)⊗λi
z0

, λ⃗)) is rationally equivalent, and thus cohomolo-
gous, to (a multiple of) hN , can be seen as in the following way. Recall that a
Poincaré bundle P(n) is ν-relatively very ample for all n ≥ 2g − 1, which in

turn induces a relative embedding of C × Picn(C)
in−→ P(ν∗P(n)) over Picn(C)

and we have a natural sequence of maps over PicnC

C × PicnC P(ν∗P(n)) PPicnC(⊕iν∗P(n)λi , λ⃗)

PicnC

and we continue to denote the composition mapping C×PicnC toPPicnC(⊕iν∗P(n)λi , λ⃗)
over PicnC by in. This makes in(C×Picn(C)) inPPicnC(⊕iν∗P(n)⊗λi , λ⃗) homol-
ogous to (a scalar multiple of) the (relative, over the base PicnC) Poincaré
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dual of h ∈ H2(PPicnC(⊕iν∗P(n)⊗λi , λ⃗)). In turn, the image of the [C ×
PPicnC(⊕iν∗P(n)⊗λi

z0
, λ⃗)] under the Gysin map f0∗ is given by

f0∗

�

[C ×PPicnC(⊕iν∗P(n)
⊗λi
z0

, λ⃗)]
�

= hN+1⌢ in(C × Picn(C))

= hN .

Yet again, for the sake of simplicity we won’t bother ourselves with the scalar
multiples, which is fine because we’re working over Q. Noting that

γi(e− h) + h(γi − γi) = γih− eγi,

it is now easy to check that the kernel of d1
1 is given by:

H∗(PPicnC(⊕iν∗P(n)
⊗λi
z0

, λ⃗))(e− h)[2N]
⊕

H∗(PPicnC(⊕iν∗P(n)
⊗λi
z0

, λ⃗))(γi − γi)[2N], (i = 1, . . . , 2g)

where [2N] denotes a shift in the cohomological degree by 2N , and which
is viewed as a ι∗H∗(PPicnC(⊕iν∗P(n)⊗λi , λ⃗)) ∼= H∗(PPicnC(⊕iν∗P(n)⊗λi

z0
, λ⃗))-

module. The cokernel of d1
1 , which forms E0,∗

2 is given by

H∗(Picn(C))[h]
hN

(where note that as remarked before r < N0 − g, see (1)).

Now we work out the differential for p = 2 by computing the Gysin push-
fowards by each of the face maps:

f0∗(1⊗ e) = ehN , f1∗(1⊗ e) = hN+1 =⇒ d2
1 (1⊗ e) = (e− h)hN ,

f0∗(e⊗ γi) = γih
N+1, f1∗(e⊗ γi) = eγih

N =⇒ d2
1 (e⊗ γi) = (γih− eγi)h

N ,

f0∗(1⊗ γi) = γih
N , f1∗(1⊗ γi) = γih

N =⇒ d2
1 (1⊗ γi) = (γi − γi)h

N ,

d2
1 (γiγ j) = 0,

where the last equality follows form the fact that on Symp H1(C) for p ≥ 2,
the alternating sum of face maps is, by definition, 0. Recalling our earlier re-
mark that N < N1−g, we see that the E−1,∗

2 terms, as an H∗(PPicnC(⊕iν∗P(n)
⊗λi
z0+z1

, λ⃗))-
module, are given by:

H∗(Picn(C);Q(−N))[h]
hN

(e− h)[2N]
⊕

1≤i≤2g

H∗(Picn(C);Q(−r))[h]
hN

(γi − γi)[2N].

Whereas the kernel of d2
1 is generated by exactly what one expects: as a

H∗(PPicnC(⊕iν∗P(n)
⊗λi
z0+z1

, λ⃗))-module, we have

Ker(d2
1 ) =
⊕

1≤i≤2g

H∗(PPicnC(⊕iν∗P(n)
⊗λi
z0+z1

, λ⃗))
�

e⊗ γi − 1⊗ γih+ 1⊗ eγi

�

[4N]

⊕

1≤i, j≤2g

H∗(PPicnC(⊕iν∗P(n)
⊗λi
z0+z1

, λ⃗))(γiγ j)[4N].
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For p = 3 we have d3
1 : E−3,∗

1 → E−2,∗
1 given by:

d3
1 (1⊗ e⊗ γi) = e⊗ γih

N − 1⊗ γih
N+1 + 1⊗ eγih

N ⇐=







f0∗(1⊗ e⊗ γi) = e⊗ γih
N ,

f1∗(1⊗ e⊗ γi) = 1⊗ γih
N+1

f2∗(1⊗ e⊗ γi) = 1⊗ eγih
N

d3
1 (e⊗ γiγ j) = γiγ jh

N+1,

d3
1 (1⊗ γiγ j) = γiγ jh

N ,

d3
1 (γiγ jγk) = 0,

where, for the last three equalities, recall again that on Symp H1(C) for p ≥ 2,
the alternating sum of face maps is, by definition, 0. Therefore the E−2,∗

1 terms
defined by Ker(d2

1 )/Coker(d3
1 ) is given by:

⊕

1≤i≤2g

H∗(Picn(C);Q(−2N))[h]
hN

�

e⊗ γi − 1⊗ γih+ 1⊗ eγi

�

[4N]

⊕

1≤i, j≤2g

H∗(Picn(C);Q(−2N))[h]
hN

(γiγ j)[4N].

The formula for the differentials in the case of p ≥ 3 mimics that of p = 3,
and we have:

1⊗ e⊗ cη⃗1 . . . cη⃗p−2 7→
�

(e⊗ cη⃗1 . . . cη⃗p−2)− (1⊗ c1 . . . cp−2)h
�

hN ,

e⊗ cη⃗1 . . . cη⃗p−1 7→ cη⃗1 . . . cη⃗p−1hN+1,

1⊗ cη⃗1 . . . cη⃗p−1 7→ cη⃗1 . . . cη⃗p−1hr

cη⃗1 . . . cη⃗p 7→ 0

It is now easy to check that

Ker(d p
1 )/Coker(d p+1

1 ) =
⊕

1≤i≤2g

H∗(Picn(C);Q(−pN))[h]
hN

�

e⊗ cη⃗1 . . . cη⃗p−1 − 1⊗ cη⃗1 . . . cη⃗p−1

�

[2pN]

⊕

1≤i, j≤2g

H∗(Picn(C);Qℓ(−pN))[h]
hN

(cη⃗1 . . . cη⃗p )[2pN].

Now we are left with analysing the resulting E2 page. That the differentials on
the E2 page vanish for p ≤ n− 2g follow simply from weight considerations- the
space T• consists of smooth projective varieties and thus their nth cohomology is
pure of weight n. Now observe the following: we have an equality

RΓc(PPicnC(⊕iν∗P(n)
⊗λi , λ⃗), C•(QℓPPicnC (⊕iν∗P(n)⊗λi ,λ⃗)

)) =

RΓc(PPicnC(⊕iν∗P(n)
⊗λi , λ⃗), j!QℓHomn(C ,P (λ⃗))

)
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in the derived category of constructible sheaves over PPicnC(⊕iν∗P(n)⊗λi , λ⃗) where
C•(QPPicnC (⊕iν∗P(n)⊗λi ,λ⃗)) denotes the complex of ℓ-adic sheaves:

0→ j! j
∗QℓT−1

→QℓT−1
→ π0∗π

∗
0QℓT−1

→ (π1∗π
∗
1QℓT−1

⊗ sgn2)
S2 · · · →

· · · → (πp∗π
∗
pQℓT−1

⊗ sgnp+1)
Sp+1 → ·· · (25)

on the other hand, for any m ∈ N we have

RiΓc(PPicnC(⊕iν∗P(n)
⊗λi , λ⃗), C•(QℓPPicnC (⊕iν∗P(n)⊗λi ,λ⃗)

))∼=

RiΓc(PPicnC(⊕iν∗P(n)
⊗λi , λ⃗), C•(QℓPPicnC (⊕iν∗P(n)⊗λi ,λ⃗)

)/τ≥mC•(QℓPPicnC (⊕iν∗P(n)⊗λi ,λ⃗)
)

for all i ≥ 2(m+ 1)− 2N , where τ≥mC•(QPPicnC (⊕iν∗P(n)⊗λi ,λ⃗)) denotes the truncated
complex up to the (N − 1) term and this is because τ≥mC•(QPPicnC (⊕iν∗P(n)⊗λi ,λ⃗)) is

supported on complex codimension m in PPicnC(⊕iν∗P(n)⊗λi , λ⃗). Therefore the
cohomology of Homn(C ,P (λ⃗)) up to degree n − 2g is solely dictated by the E2

page.
To this end, let

t := (e− h)

which has degree (−1, 2N + 2) and let

αi := γi − γi, i = 1, . . . , 2g

which has degree (−1, 2N +1). Clearly for 3≤ p ≤ n−2g, the element tαi1 . . .αip ,
which is of degree (−(p+ 1), 2N + 2+ p(2N + 1)), when expanded, gives us

tαi1 . . .αip

= (e− h)(ci1 − ci1) . . . (cip − cip)

= (e− h)
p
∏

j=1

ci j
+
¦

lower order terms as a polynomial on ci1 , . . . , cip

©

= (e− h)
p
∏

j=1

ci j

because the lower order terms are all 0 in
�

H2(C)⊕H0(C)
�
⊗

Symp H1(C)⊗H∗(Picn−(p+1)(C))[h]/hN ,

thanks to the alternating action of Sp+1. Whereas αi1 . . .αip+1
, which is of degree

(−(p+ 1), (p+ 1)(2N + 1)), when expanded, gives us

αi1 . . .αip+1

= (ci1 − ci1) . . . (cip+1
− cip+1

)

=
p+1
∏

j=1

ci j
+
¦

lower order terms as a polynomial on ci1 , . . . , cip+1

©

=
p+1
∏

j=1

ci j
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because again, the lower order terms are all 0 for the exact same reason cited
above.

Now as for p = 2, we have

tαi = (e− h)(γi − γi) = eγi − γih+ eγi + hγi

= eγi − γih+ eγi

because the alternating action of S2 kills H0(C2)⊗H∗(PPicnC(⊕iν∗P(n)⊗λi , λ⃗)), and
in turn, hγi. This give us the algebra structure on the E2 page for p ≤ n− 2g and
thus completes the proof of Theorem 1.1.

■

5 Arithmetic moduli of generalized elliptic surfaces

In this section, we prove new sharp enumerations on the number of generalized
elliptic fibrations over C = P1

Fq
with prescribed level structures or multiple marked

sections by applying the étale cohomology Theorem 1.2 (followed by the exact point
count Theorem 1.4) to the relevant Hom-stacks similar to [HP, §3]. In our applica-
tions, results over higher genus C where we acquire the corresponding stable étale
cohomology followed by stable point counts as in Corollary 1.5 is straightforward.

Generalized elliptic fibrations with prescribed level structures

Level structure [Γ1(m)] on an elliptic curve E is a choice of point P ∈ E of exact
order m in the smooth part of E such that over every geometric point of the base
scheme every irreducible component of E contains a multiple of P (see [KM, §1.4]).
And a level structure [Γ (2)] on an elliptic curve E is a choice of isomorphism φ :
Z/2Z⊕Z/2Z→ E(2)where E(2) is the scheme of 2-torsion Weierstrass points (i.e.,
kernel of the multiplication-by-2 map [2] : E→ E) (see [DR, II.1.18 & IV.2.3]).

Proposition 5.1. The moduli M 1,1[Γ ] of generalized elliptic curves with [Γ ]-level
structure over a field K is tame Deligne–Mumford stack isomorphic to

1. if char(K) ̸= 2,M 1,1[Γ1(2)]∼= [(Spec K[a2, a4]− (0,0))/Gm] =PK(2,4),

2. if char(K) ̸= 3,M 1,1[Γ1(3)]∼= [(Spec K[a1, a3]− (0,0))/Gm] =PK(1,3),

3. if char(K) ̸= 2,M 1,1[Γ1(4)]∼= [(Spec K[a1, a2]− (0,0))/Gm] =PK(1,2),

4. if char(K) ̸= 2,M 1,1[Γ (2)]∼= [(Spec K[a2, a2]− (0,0))/Gm] =PK(2,2),

5. if char(K) ∤ m for m= 5, 6,7, 8,9, 10 or 12,M 1,1[Γ1(m)]∼= P1,

where λ · ai = λiai for λ ∈ Gm and i = 1,2, 3,4. Thus, the ai ’s have degree i
respectively. Moreover, the discriminant divisors of (M 1,1[Γ ])K have degree 12.
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Proof. [Behrens, §1.3] showsM 1,1[Γ1(2)]∼=P (2,4) over Spec(Z[1/2]) with

Y 2Z = X 3 + a2X 2Z + a4X Z2 .

[HMe, Proposition 4.5] showsM 1,1[Γ1(3)]∼=P (1,3) over Spec(Z[1/3]) with

Y 2Z + a1X Y Z + a3Y Z2 = X 3 .

[Meier, Examples 2.1] showsM 1,1[Γ1(4)]∼=P (1,2) over Spec(Z[1/2]) with

Y 2Z + a1X Y Z + a1a2Y Z2 = X 3 + a2X 2Z .

[Stojanoska, Proposition 7.1] showsM 1,1[Γ (2)]∼=P (2,2) over Spec(Z[1/2])

Y 2Z = X 3 + (λ1 +λ2)X
2Z +λ1λ2X Z2 .

[Meier, Example 2.5] shows M 1,1[Γ (m)] ∼= P1 for m = 5,6, 7,8, 9,10 or 12
over Spec(Z[1/m]). By Remark 2.2, the respectiveM 1,1[Γ ] as weighted projective
stacks are tame Deligne–Mumford as well, and in fact, smooth.

For the degree of the discriminant on stack quotients cases, it suffices to find the
weight of the Gm-action. The explicit defining equation of the respective universal
family implies that the λ ∈Gm also acts on the discriminant of the universal family
by multiplying λ12. Therefore, the discriminant has degree 12. ■

A generalized elliptic curve X over CK can be thought of as a flat family of
semistable elliptic curves admitting a group structure, such that a finite group
scheme G → CK (determined by Γ ) embeds into X and its image meets every
irreducible component of every geometric fibers of X .

We now consider the moduli stack L [Γ ]12n,g := Homn(C ,M 1,1[Γ ]) of generalized
elliptic fibrations over C with [Γ ]-level structures and 12n nodal singular fibers.

Proposition 5.2. Let K be a field with char(K) ∤ m where m depends on [Γ ] as
Proposition 5.1. Then the moduli stack L [Γ ]12n,g of generalized elliptic fibrations over
the parameterized smooth projective basecurve CK of genus g with discriminant degree
12n> 0 and [Γ ]-level structures is tame Deligne–Mumford stack Homn(C ,M 1,1[Γ ])
parameterizing the K-morphisms f : C →M 1,1[Γ ] such that f ∗OM 1,1[Γ ](1) ∈ PicnC .

Proof. Without the loss of generality, we prove the Homn(C ,M 1,1[Γ1(2)]) case over
a field K with char(K) ̸= 2. The proof for the other cases are analogous. By the
definition of the universal family p, any generalized elliptic curves π : Y → C with
[Γ1(2)]-structures comes from a morphism f : C →M 1,1[Γ1(2)] and vice versa. As
this correspondence also works in families, the moduli stack of generalized elliptic
curves over C with [Γ1(2)]-structures is isomorphic to Hom(C ,M 1,1[Γ1(2)]).

Since the discriminant degree of f is 12 deg f ∗OM 1,1[Γ1(2)](1) by Proposition 5.1,

the substack Homn(C ,M 1,1[Γ1(2)]) parametrizing such f ’s with deg f ∗OM 1,1[Γ1(2)](1) =
n is the desired moduli stack. Since deg f ∗OM 1,1[Γ1(2)](1) = n is an open condi-

tion, Homn(C ,M 1,1[Γ1(2)]) is an open substack of Hom(C ,M 1,1[Γ1(2)]), which is
tame Deligne–Mumford asM 1,1[Γ1(2)] itself is tame Deligne–Mumford by Propo-
sition 5.1. Thus Homn(C ,M 1,1[Γ1(2)]) satisfies the desired properties. ■
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We now acquire the exact number |L [Γ ]12n,0(Fq)/ ∼ | of Fq–isomorphism classes

of Fq–points (i.e., the non–weighted point count) of the moduli stack L [Γ ]12n,0 .

Theorem 5.3. If char(Fq) ̸= 2, then

|L [Γ1(2)]12n,0 (Fq)/∼ |= 2 ·#q

�

Homn(P1,P (2, 4))
�

= 2(q6n+1 − q6n−1)

|L [Γ1(4)]12n,0 (Fq)/∼ |= #q

�

Homn(P1,P (1,2))
�

= q3n+1 − q3n−1

|L [Γ (2)]12n,0 (Fq)/∼ |= 2 ·#q

�

Homn(P1,P (2,2))
�

= 2(q4n+1 − q4n−1)

If char(Fq) ̸= 3, then

|L [Γ1(3)]12n,0 (Fq)/∼ |= #q

�

Homn(P1,P (1,3))
�

= q4n+1 − q4n−1

If char(Fq) ∤ m, then

|L [Γ1(m)]12n,0 (Fq)/∼ |= #q

�

Homn(P1,P (1,1)∼= P1)
�

= q2n+1 − q2n−1

m is for m= 5,6, 7,8, 9,10 or 12.

Proof. Fix n ∈ Z≥1. Since any ϕg ∈ Homn(P1,P (a, b)) is surjective, the generic
stabilizer group µgcd(a,b) of P (a, b) is the automorphism group of ϕg . Using the
identification from Proposition 5.2 and the weighted point counts (see Definition
2.4) of Hom stacks as in Theorem 1.2, we have the desired formula for the Fq–
isomorphism classes of Fq–points (i.e., the non–weighted point count) as

|L [Γ ]12n,0(Fq)/∼ |= |µgcd(a,b)| · (q(a+b)n+1 − q(a+b)n−1)

where the factor 2 comes from the hyperelliptic involution when µgcd(a,b) = µ2 . ■

The ∆ is the discriminant of a generalized elliptic fibration and if K = Fq, then
the height of discriminant is 0< ht(∆) := qdeg∆ = q12n.

Corollary 5.4. The function N (Fq(t), [Γ ], 0 < q12n ≤ B), which counts the num-
ber of generalized elliptic curves with [Γ ]-level structures over P1

Fq
with char(Fq) ∤ m

where m depends on Γ as Proposition 5.1; ordered by 0< ht(∆) = q12n ≤ B, satisfies:

N (Fq(t), [Γ1(2)], 0< q12n ≤ B) = 2 ·
(q7 − q5)
(q6 − 1)

·
�

B
1
2 − 1
�

N (Fq(t), [Γ1(3)], 0< q12n ≤ B) =
(q5 − q3)
(q4 − 1)

·
�

B
1
3 − 1
�

N (Fq(t), [Γ1(4)], 0< q12n ≤ B) =
(q4 − q2)
(q3 − 1)

·
�

B
1
4 − 1
�

N (Fq(t), [Γ (2)], 0< q12n ≤ B) = 2 ·
(q5 − q3)
(q4 − 1)

·
�

B
1
3 − 1
�

N (Fq(t), [Γ1(m)], 0< q12n ≤ B) =
(q3 − q1)
(q2 − 1)

·
�

B
1
6 − 1
�

m is for m= 5, 6,7, 8,9, 10 or 12.
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Proof. Without the loss of the generality, we prove the [Γ1(2)]–level structure case
over char(Fq) ̸= 2. The proof for the other cases are analogous. By Theorem 5.3,
we know that the number of Fq-isomorphism classes of generalized elliptic fibra-

tions of discriminant degree 12n with [Γ1(2)]-structures over P1
Fq

is |L [Γ1(2)]12n,0 (Fq)/∼
|= 2 · (q6n+1−q6n−1). Using this, we can explicitly compute the sharp enumeration
on N (Fq(t), [Γ1(2)], 0< q12n ≤ B) as follows

N (Fq(t), [Γ1(2)], 0< q12n ≤ B) =

j

logqB
12

k

∑

n=1

|L [Γ1(2)]12n,0 (Fq)/∼ |= 2 ·
(q7 − q5)
(q6 − 1)

· (B
1
2 − 1)

■

Main leading term matches the analogous asymptotic counts of elliptic curves
over Q ordered by naïve height by Harron and Snowden in [HS, Theorem 1.2].

(m− 1)-stable genus one fibrations with m-marked points

We proceed to determine the sharp enumeration on the number of m-marked (m−
1)-stable genus one fibrations over P1

Fq
for 2≤ m≤ 5. First, we state the definition

of m-marked (m− 1)-stability from [LP, Definition 1.5.3], which is a modification
of the Deligne–Mumford stability in [DM]:

Definition 5.5. Let K be a field and m be a positive integer. Then, a tuple (C , p1, . . . , pm),
of a geometrically connected, geometrically reduced, and proper K-curve C of
arithmetic genus one with m distinct K-rational points pi in the smooth locus of C ,
is a (m−1)-stable m-marked curve of arithmetic genus one if the curve CK := C×K K
and the divisor Σ := {p1, . . . , pm} satisfy the following properties, where K is the
algebraic closure of K:

1. CK has only nodes and elliptic u-fold points as singularities (see below),
where u< m,

2. CK has no disconnecting nodes, and

3. every irreducible component of CK contains at least one marked point.

Remark 5.6. A singular point of a curve over K is an elliptic u-fold singular point
if it is Gorenstein and étale locally isomorphic to a union of u general lines in Pu−1

K
passing through a common point.

Note that the name “(m− 1)-stability” comes from [Smyth, §1.1], which is de-
fined when char(K) ̸= 2, 3. By [LP, Proposition 1.5.4], the above definition (by
[LP, Definition 1.5.3]) coincides with that of Smyth when char(K) ̸= 2,3, hence
we adapt Smyth’s naming convention on Lekili and Polishchuk’s definition. Re-
gardless, we focus on the case when char(K) ̸= 2,3, so that the moduli stack of
such curves behaves reasonably.

By [Smyth, Theorem 3.8], we have the moduli stack of (m−1)-stable m-marked
curves of arithmetic genus one over any field of characteristic ̸= 2, 3:
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Theorem 5.7. There exists a proper irreducible Deligne–Mumford moduli stackM 1,m(m−
1) of (m− 1)-stable m-marked curves arithmetic genus one over Spec(Z[1/6])

Note that when m= 1,M 1,1(0)∼=M 1,1 is the Deligne–Mumford moduli stack
of stable elliptic curves. In fact, the construction ofM 1,m(m−1) extends to Spec Z
by [LP, Theorem 1.5.7] (called M

∞
1,m in loc.cit.) as an algebraic stack, which is

proper over Spec Z[1/N] where N depends on m:

• if m≥ 3, then N = 1,

• if m= 2, then N = 2, and

• if m= 1, then N = 6.

However, even with those assumptions above, M 1,m(m − 1) is not necessarily
Deligne–Mumford. Nevertheless, by [LP, Theorem 1.5.7.], we obtain the explicit
descriptions ofM 1,m(m− 1) for 2≤ m≤ 5:

Proposition 5.8. The moduli M 1,m(m − 1) of m-marked (m − 1)-stable curves of
arithmetic genus one over a field K is tame Deligne–Mumford stack isomorphic to

1. if char(K) ̸= 2, 3,M 1,2(1)∼= [(Spec K[a2, a3, a4]− 0)/Gm] =PK(2,3, 4),

2. if char(K) ̸= 2, 3,M 1,3(2)∼= [(Spec K[a1, a2, a2, a3]−0)/Gm] =PK(1,2, 2,3),

3. if char(K) ̸= 2,M 1,4(3)∼= [(Spec K[a1, a1, a1, a2, a2]−0)/Gm] =PK(1,1, 1,2, 2),

4. over any K,M 1,5(4)∼= P5
K ,

where λ · ai = λiai for λ ∈ Gm and i = 1,2, 3,4. Thus, the ai ’s have degree i
respectively. Moreover, the discriminant divisors ofM 1,m(m− 1) have degree 12.

Proof. The moduli stack M 1,2(1) of 2-marked points at ∞ and (0,0) Smyth’s 1-
stable curves of arithmetic genus one has an isomorphism M 1,2(1) ∼= P (2,3, 4)
over Spec(Z[1/6]) as in [LP, Theorem 1.5.7.] through the universal equation

Y 2Z + a3Y Z2 = X 3 + a2X 2Z + a4X Z2 ,

with discriminant ∆= −16a3
2a2

3+16a2
2a2

4−64a3
4−27a4

3+56a2a4a2
3. Similarly, the

Proof of [LP, Theorem 1.5.7.] gives the corresponding isomorphisms M 1,m(m −
1) ∼= P (λ⃗). By Remark 2.2, the respectiveM 1,1[Γ ] as weighted projective stacks
are tame Deligne–Mumford as well, and in fact, smooth. For the degree of the
discriminant when char(K) ̸= 2, 3, it suffices to describe the discriminant divisor,
the locus of singular curves in M 1,m(m − 1). First, [LP, Theorem 1.5.7.] shows
that in the above case, where M 1,m(m− 1) ∼= P (λ⃗), the line bundle OP (λ⃗)(1) of
degree one is isomorphic to λ := π∗ωπ, where π : C 1,m(m− 1) →M 1,m(m− 1)
is the universal family of (m−1)-stable m-marked curves of arithmetic genus one.
Since M 1,m(m − 1) is smooth and the Picard rank is one (generated by λ), the
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discriminant divisor is Cartier. In fact, by [Smyth2, §3.1], it coincides with the locus
∆ir r of curves with non-disconnecting nodes or non-nodal singular points. Then
[Smyth2, Remark 3.3] (which assumes char(K) ̸= 2, 3) implies that ∆ir r ∼ 12λ,
thus the discriminant divisor has degree 12. ■

We now consider the moduli stack L m
12n,0 := Homn(C ,M 1,m(m − 1)) of m-

marked (m− 1)-stable genus one fibrations over C with 12n nodal singular fibers.

Proposition 5.9. Let K be a field with char(K) > 3. Then the moduli stack L m
12n,0

of m-marked (m−1)-stable genus one fibrations over the parameterized smooth pro-
jective basecurve CK of genus g with discriminant degree 12n > 0 is tame Deligne–
Mumford stack Homn(C ,M 1,m(m − 1)) parameterizing the K-morphisms f : C →
M 1,m(m− 1) such that f ∗OM 1,m(m−1)(1) ∈ PicnC .

Proof. Without the loss of the generality, we prove the 2-marked 1-stable case over
a field K with char(K) ̸= 2, 3. The proof for the other cases are analogous. By the
definition of the universal family p, any 2-marked 1-stable arithmetic genus one
curves π : Y → C with discriminant degree 12n comes from a morphism f : C →
M 1,2(1) and vice versa. As this correspondence also works in families, the moduli
stack of 2-marked 1-stable curves of arithmetic genus one over CK is isomorphic
to Hom(C ,M 1,2(1)). Since the discriminant degree of f is 12 deg f ∗OM 1,2(1)(1)
by Proposition 5.8, the substack Homn(C ,M 1,2(1)) parametrizing such f ’s with
deg f ∗OM 1,2(1)(1) = n is the desired moduli stack. Since deg f ∗OM 1,2(1)(1) = n is

an open condition, Homn(C ,M 1,2(1)) is an open substack of Hom(C ,M 1,2(1)),
which is tame Deligne–Mumford as M 1,2(1) itself is tame Deligne–Mumford by
Proposition 5.8. Thus Homn(C ,M 1,2(1)) satisfies the desired properties. ■

We now acquire the exact number |L m
12n,0(Fq)/ ∼ | of Fq–isomorphism classes

of Fq–points (i.e., the non–weighted point count) of the moduli stack L m
12n,0 .

Theorem 5.10. If char(Fq) ̸= 2, 3, then

|L m=2
12n,0(Fq)/∼ |= #q

�

Homn(P1,P (2, 3,4))
�

+#q

�

Homn(P1,P (2,4))
�

= (q9n+2 + q9n+1 − q9n−1 − q9n−2) + (q6n+1 − q6n−1)

|L m=3
12n,0(Fq)/∼ |= #q

�

Homn(P1,P (1, 2,2, 3))
�

+#q

�

Homn(P1,P (2,2))
�

= (q8n+3 + q8n+2 + q8n+1 − q8n−1 − q8n−2 − q8n−3) + (q4n+1 − q4n−1)

|L m=4
12n,0(Fq)/∼ |= #q

�

Homn(P1,P (1, 1,1, 2,2))
�

+#q

�

Homn(P1,P (2,2))
�

= (q7n+4 + q7n+3 + q7n+2 + q7n+1 − q7n−1 − q7n−2 − q7n−3 − q7n−4) + (q4n+1 − q4n−1)

|L m=5
12n,0(Fq)/∼ |= #q

�

Homn(P1,P(1, 1,1, 1,1, 1)∼= P5)
�

= q6n+5 + q6n+4 + q6n+3 + q6n+2 + q6n+1 − q6n−1 − q6n−2 − q6n−3 − q6n−4 − q6n−5

Proof. Note that M 1,2(1) ∼= P (2,3, 4) has the substack P (2, 4) with the generic
stabilizer of order 2. Using the identification from Proposition 5.9 and the weighted
point counts (see Definition 2.4) of Hom stacks as in Theorem 1.2, we have the
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number of isomorphism classes of Fq-points ofL m=2
12n,0 with discriminant degree 12n

is |L m=2
12n,0(Fq)/ ∼ | = (q9n+2 + q9n+1 − q9n−1 − q9n−2) + (q6n+1 − q6n−1) by summing

the weighted point counts of Hom stacks as in [HP2, Proposition 4.10]. Similarly,
M 1,3(2) ∼= P (1,2, 2,3) and M 1,4(3) ∼= P (1,1, 1,2, 2) has the substack P (2,2)
with the generic stabilizer of order 2. This implies that adding (q4n+1 − q4n−1)
to the corresponding weighted points count gives the desired non–weighted point
counts. Finally,M 1,5(4)∼= P5, so that the non-weighted point count coincides with
the weighted point count. ■

The∆ is the discriminant of a m-marked (m−1)-stable genus one and if K = Fq,
then the height of discriminant is 0< ht(∆) := qdeg∆ = q12n.

Corollary 5.11. The function N (Fq(t), m, 0 < q12n ≤ B) abbreviated as N (m),
which counts the number of m-marked (m − 1)-stable genus one fibration over P1

Fq

with char(Fq) ̸= 2,3 ordered by 0< ht(∆) = q12n ≤ B, satisfies:

N (m= 2) =
(q11 + q10 − q8 − q7)

(q9 − 1)
· (B

3
4 − 1) +

(q7 − q5)
(q6 − 1)

· (B
1
2 − 1)

N (m= 3) =
(q11 + q10 + q9 − q7 − q6 − q5)

(q8 − 1)
· (B

2
3 − 1) +

(q5 − q3)
(q4 − 1)

· (B
1
3 − 1)

N (m= 4) =
(q11 + q10 + q9 + q8 − q6 − q5 − q4 − q3)

(q7 − 1)
· (B

7
12 − 1) +

(q5 − q3)
(q4 − 1)

· (B
1
3 − 1)

N (m= 5) =
(q11 + q10 + q9 + q8 + q7 − q5 − q4 − q3 − q2 − q1)

(q6 − 1)
· (B

1
2 − 1)

Proof. The proof is similar to the proof of Corollary 5.4
■
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