
Enumerating odd–degree hyperelliptic
curves and abelian surfaces over P1

Changho Han and Jun–Yong Park

Abstract

Given asymptotic counts in number theory, a question of Venkatesh asks what
is the topological nature of lower order terms. We consider the arithmetic aspect
of the inertia stack of an algebraic stack over finite fields to partially answer this
question. Subsequently, we acquire new sharp enumerations of quasi–admissible
odd–degree hyperelliptic curves over Fq(t) ordered by discriminant height.

1 Introduction

In [GGW, Problem 5], Venkatesh asks the following question:

What is the topological meaning of secondary terms
appearing in asymptotic counts in number theory?

As explained therein by Venkatesh, in many interesting number theory problems (e.g.,
counting number fields, arithmetic curves or abelian varieties over a number field) one
has not only a main term in the asymptotic count, but a secondary term or more. We
have very little understanding of these lower order terms. They are not just of theoretical
interest: when one tries to verify the conjectures numerically, one finds that the secondary
terms are dominant in the computational range. For example, the number of cubic number
fields of height ≤ B for certain constants a, b > 0 is

aB − bB5/6 + o(B
5
6 ).

The moduli functors we wish to enumerate are often represented by algebraic stacks
rather than by schemes (or algebraic spaces) due to the presence of non-trivial automor-
phisms of the objects we wish to parameterize. If we consider a finite field analogue, the
traditional approaches to count the number of rational points on the moduli spaces do not
render every lower order term. This is because the Grothendieck-Lefschetz trace formula
(relating point counts and `-adic cohomologies) for algebraic stacks as in [Behrend] counts
the rational points with weights (given a rational point x, its weight is 1

Aut(x)
). Instead,

we must acquire the number |X (Fq)/ ∼ | of Fq–isomorphism classes of Fq–points of the
algebraic stack X , i.e., the non–weighted point count of X over Fq. In this regard, the
coarse moduli space c : X → X is insufficient as |X(Fq)| 6= |X (Fq)/ ∼ |.

This discrepancy naturally raises the following question:

Which arithmetic invariant of a specific geometric object Y is equal to the
non–weighted point count |X (Fq)/ ∼ | of the algebraic stack X over Fq?
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We clarify the arithmetic role of the inertia stack I(X ) of an algebraic stack X over Fq
which parameterizes pairs (x, ξ), where x ∈ X and ξ is the conjugacy class of g ∈ Aut(x).

Theorem 1.1. Let X be an algebraic stack over Fq of finite type with quasi-separated
finite type diagonal and let I(X ) be the inertia stack of X . Then,

|X (Fq)/ ∼ | = #q(I(X ))

where #q(I(X )) is the weighted point count of the inertia stack I(X ) over Fq.

Before drawing the connection of this Theorem to the question of lower order terms, let
us instead first consider a simpler problem: find the non-weighted point count |X (Fq)/ ∼ |
of a Deligne–Mumford moduli stack X/Fq of finite type with affine diagonal. In a given
counting problem of number theory, one must be aware of the discriminant involved as the
relevant moduli stack X is often not quasi-compact (so cannot be of finite type), but is
rather a disjoint union of clopen substacks XB of finite type, indexed by ranges of values
0 < ht(∆) ≤ B of height of discriminant up to B. In this regard the question over finite
fields is then equivalent to understanding the lower order terms of the counting function
N(B) as a function of B

N(B) := |X̂B(Fq)/ ∼ | = #q(I(X̂B)) =
∑
B′≤B

#q(I(XB′)), X̂B :=
⊔
B′≤B

XB′ .

Therefore, the lower order terms of N(B) are determined by the growth pattern of
#q(I(X̂B)) with respect to B. Here, we note that the geometry of I(X ) can be quite
complicated. For example, even if X is irreducible, I(X ) can be disconnected, with many
irreducible components of different dimensions corresponding to different automorphisms.
Also, I(X ) may have intersecting irreducible components which are possibly singular.
And crucially, I(X ) could contain lower-dimensional irreducible components (non-existent
on either X or X) which will contribute to various lower order terms. Coming back to
understanding the algebro-topological meaning of the lower order terms of N(B), we see
that the weighted point count of the inertia stack #q(I(X̂B)) over Fq is naturally equal to
the alternating sum of trace of geometric Frobenius via the Grothendieck-Lefschetz trace
formula for algebraic stacks as in Theorem 2.2 by [Behrend, Sun]

N(B) =

2 dim I(X̂B)∑
i=0

(−1)i · tr
(

Frob∗q : H i
ét,c(I(X̂B)/Fq ;Q`)→ H i

ét,c(I(X̂B)/Fq ;Q`)
)
.

It is natural to consider the grading determined by degree i of compactly-supported
cohomologies. Observe that the top degree cohomology (when i = 2 dim I(X )) can be
interpreted as the main leading term. Then the rest of the lower order terms of N(B)
corresponds to the lower degree, compactly-supported, `-adic cohomologies of I(X̂B) with
geometric Frobenius weights. However, the general mechanism that precisely determines
which connected component(s) of I(X̂B) contribute(s) to a given lower order term of
a specific order remains unclear without fixing the counting/moduli problem X̂B and
studying the arithmetic geometry of I(X̂B) with regard to #q(I(X̂B)) = |X̂B(Fq)/ ∼ |.

Under the framework of the Weil conjectures, this analysis provides a partial answer to
the nature of lower order terms through the lower-dimensional irreducible components of
I(X ) corresponding to different conjugacy classes of automorphisms as in Definition 2.6.
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Due to the inherent complexity of inertia stacks in general, we instead focus on
irreducible algebraic stacks X of finite type (with conditions on the diagonal). Furthermore,
we restrict to the case when X ∼= [U/G] is a quotient stack, which is a testing ground for
the strategy above. Then, the inertia stack I(X ) turns out to be a quotient stack as well,
of the form [R∆/G] (see Corollary 2.5). If X is furthermore Deligne–Mumford with affine
diagonal, then I(X ) decomposes into a disjoint union of X and other components, which
are fixed loci of nontrivial elements of G (see (6) and Definition 2.6 for more details).

In particular, we consider the special case when X is the Hom stack Homn(P1,P(~λ))

parameterizing the degree n ∈ Z≥1 morphisms f : P1 → P(~λ) of rational curves on a

weighted projective stack P(~λ) (see Definition 3.1) with f ∗OP(~λ)(1) ' OP1(n). In fact,

both P(~λ) and Homn(P1,P(~λ)) are quotient stacks of a special kind by Definition 3.1 and
Proposition 3.5. These stacks are important because some interesting moduli stacks are of
that form: for example, both authors in [HP] showed that L1,12n := Homn(P1

Fq ,PFq(4, 6))

represents the moduli stack of stable elliptic fibrations over P1
Fq with discriminant degree

12n (as (M1,1)Fq
∼= PFq(4, 6) is the moduli stack of stable elliptic curves when 2, 3 - q).

This observation was crucial in loc. cit. for computing the exact non-weighted point
count1 |L1,12n(Fq)/ ∼ | over Fq (see also [PS]).

To obtain the non-weighted point count of the Hom stack Homn(P1
Fq ,PFq(~λ)), it is

equivalent to find the weighted point count of its inertia stack I
(

Homn(P1
Fq ,PFq(~λ))

)
by Theorem 1.1. It turns out that the computation of the non-weighted point count

of I
(

Homn(P1
Fq ,PFq(~λ))

)
reduces to finding the general formula for for weighted point

count #q

(
Homn(P1

Fq ,PFq(~λ))
)

for any ~λ.

Theorem 1.2. Fix the weight ~λ = (λ0, . . . , λN), and let R be the set of positive integers

r (including r = 1) that divide q − 1. For every r ∈ R, define ~λr to be the subtuple of ~λ
consisting of elements that are divisible by r. Then,

|Homn(P1,P(~λ))(Fq)/ ∼ | =
∑
r∈R

ϕ(r) ·#q(Homn(P1,P(~λr)))

where ϕ is the Euler ϕ-function.

To compute the weighted point count of any Hom stack of the form Homn(P1,P(~λ)),
we use the Grothendieck ring of stacks K0(StckFq) (see Definition 4.1 and the discussion
thereafter, also Proposition 4.5). As a result, we obtain the following formula:

Theorem 1.3. Fix the weight ~λ = (λ0, . . . , λN) with |~λ| :=
N∑
i=0

λi. Then the weighted

point count of the Hom stack Homn(P1,P(~λ)) over Fq is

#q

(
Homn(P1,P(~λ))

)
=

(
N∑
i=0

qi
)
·
(
q|
~λ|n − q|~λ|n−N

)

= q|
~λ|n−N ·

(
q2N + · · ·+ qN+1 − qN−1 − · · · − 1

)
1 The same point count has also been established in the past by [de Jong, Proposition 4.16] via a

different method which works also in characteristic 2 and 3.
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We would like to apply the ideas behind the two Theorems above, as an algorithm for
finding non-weighted point counts, to other moduli stacks, such as the moduli stack of
genus g ≥ 2 fibrations over P1

Fq . However, it is difficult to acquire the arithmetic invariants

of I
(
Hom(P1,Mg)

)
due to the global geometry of the Deligne–Mumford moduli stack

Mg of stable genus g curves formulated in [DM]. Moreover, the moduli stack Mg of
stable genus g ≥ 2 curves are not weighted projective stacks in general. Henceforth, the
goal is to find a weighted projective stack that is a substitute for a special substack of
Mg, in order to easily apply the said algorithm discussed above.

Thus, we focus on hyperelliptic genus g ≥ 2 curves2. Firstly, all smooth genus 2 curves
are hyperelliptic, thus M2

∼= H2. In general, recall that an odd–degree hyperelliptic curve
has a marked rational Weierstrass point at ∞. In this paper, we will concentrate on
the moduli substack Hg,1 ⊂ Mg,1 of hyperelliptic genus g ≥ 2 curves with 1 marked
rational Weierstrass point (which has the same dimension as Hg) as we focus on counting
odd–degree hyperelliptic genus g ≥ 2 curves. Since Hg,1 is not proper, we consider
the proper moduli stack Hg,1 := Hg,1 ⊂ Mg,1 (meaning the reduced closure) of stable
odd–degree hyperelliptic curves. Similar toMg, extracting the exact arithmetic invariants
of Homn(P1,Hg,1) is challenging and Hg,1 is not a weighted projective stack in general, so
we consider (upto some conditions on characteristic of Fq) a different extension of smooth
odd–degree hyperelliptic curves such that the compactified moduli stack is a weighted
projective stack, originally introduced as a special case of [Fedorchuk, Definition 2.5]:

Definition 1.4. Fix an integral reduced K-scheme B, where char(K) 6= 2. A flat family
u : C → B of genus g ≥ 2 curves is quasi–admissible if every geometric fiber has at worst
A2g−1-singularities (i.e., étale locally defined by x2 +ym for some 0 < m ≤ 2g), and factors
through a separable morphism φ : C → H of degree 2 where H is a P1-bundle over B with
a distinguished section (often called ∞) which is a connected component of the branch
locus of u.

The notion of quasi–admissible covers whereby the general member of C is not an
admissible cover of P1 is natural and have been studied in depth by [Stankova, §2.4.] as
the closest covers to the original families of stable curves. For example, if char(K) > 2g+1
or 0, then a quasi–admissible curve over any K-scheme B can be written as an odd–degree
hyperelliptic curve via generalized Weierstrass equation:

y2 = f(x) = x2g+1 + a4x
2g−1 + a6x

2g−2 + a8x
2g−3 + · · ·+ a4g+2, (1)

where ai’s are appropriate sections of suitable line bundles on B where not all of them simul-
taneously vanish at anywhere on B. Here, we identify the section at∞ as the locus missed
by the above affine equation. This identification is a consequence of Proposition 5.9, where
we show that the Deligne–Mumford moduli stack H2g[2g− 1] of quasi–admissible curves of

genus g is isomorphic to the weighted projective stack P( ~λg) for ~λg := (4, 6, 8, . . . , 4g + 2)
over base field K with char(K) = 0 or > 2g+ 1. Assigning H2g[2g− 1] as the target stack
which naturally carries the universal family, we can now formulate the moduli stack Lg of
quasi–admissible hyperelliptic genus g fibrations with a marked Weierstrass section.

2 However, similar to elliptic curves, due to the presence of the generic non-trivial automorphism of
hyperelliptic involution, the fine moduli space for hyperelliptic curves does not exist and we must work
with the fine moduli stack especially for the existence of the universal family of hyperelliptic curves.
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Proposition 1.5. Assume char(K) = 0 or > 2g+ 1. Then, the moduli stack Lg of quasi–
admissible odd–degree hyperelliptic genus g fibrations over P1 with a marked Weierstrass
section is the tame Deligne–Mumford stack Hom>0(P1,H2g[2g − 1]) parameterizing the
K-morphisms f : P1 → H2g[2g − 1] with deg f ∗OH2g [2g−1](1) > 0.

Above proposition shows that Lg is a well-behaving object parametrizing quasi–
admissible curves of genus g over P1

K . The proposition below signifies the importance of
this stack in regard to understanding the moduli of stable odd–degree hyperelliptic genus
g curves over P1

K (with smooth generic fiber):

Theorem 1.6. Fix a base field K with char(K) > 2g + 1. Then there is a canonical
fully faithful functor of groupoids F : Sg(K)→ Lg(K) from the groupoid Sg(K) of stable
odd–degree hyperelliptic genus g ≥ 2 curves over P1

Fq with a marked Weierstrass point and
generically smooth fibers to Lg(K).

To effectively count the non–weighted Fq–points of the moduli stack Lg, we need to
impose a notion of bounded height on those Fq–points. Thanks to the works of Lockhart
and Liu, we have a natural definition (see Definition 5.14) of a hyperelliptic discriminant ∆g

of quasi–admissible curves as in [Lockhart, Liu]. It is a homogeneous polynomial of degree
4g(2g + 1) on variables ai’s, where each ai has degree i (ai’s are as in equation (1) where
B = P1

Fq in this case). Moreover, since P(4, 6, 8, . . . , 4g + 2) carries a primitive ample line
bundle OP(4,6,8,...,4g+2)(1), the degree of the discriminant ∆g of a given quasi–admissible
fibration f : P1 → H2g[2g − 1] ∼= P(4, 6, 8, . . . , 4g + 2) is equal to 4g(2g + 1)n where
f ∗OP(4,6,8,...,4g+2)(1) ∼= OP1(n). Therefore, the Hom stack Homn(P1,P(4, 6, 8, . . . , 4g + 2))
parameterizing such morphisms is the moduli stack Lg,|∆g |·n of quasi–admissible genus
g ≥ 2 fibrations of a fixed discriminant degree |∆g| · n = 4g(2g + 1)n. Consequently, we
acquire the exact weighted point count I

(
Lg,|∆g |·n

)
over Fq which is equal to the exact

non–weighted point count
∣∣Lg,|∆g |·n(Fq)/ ∼

∣∣ over Fq by Theorem 1.1.

Theorem 1.7. If char(Fq) > 2g + 1, the number
∣∣Lg,|∆g |·n(Fq)/ ∼

∣∣ of Fq–isomorphism
classes of quasi–admissible odd–degree hyperelliptic genus g fibrations over P1

Fq with a
marked Weierstrass point and discriminant of degree |∆g| · n = 4g(2g + 1)n is equal to

|L2,40n(Fq)/ ∼| = 2 · q28n · p3(q) + δ(4, q − 1) · 2 · q12n · p1(q)

|L3,84n(Fq)/ ∼| = 2 · q54n · p5(q) + δ(4, q − 1) · 2 · q24n · p2(q) + δ(6, q − 1) · 4 · q18n · p1(q)

|L4,144n(Fq)/ ∼| = 2 · q88n · p7(q) + δ(4, q − 1) · 2 · q40n · p3(q) + δ(6, q − 1) · 4 · q36n · p2(q)

+ δ(8, q − 1) · 4 · q24n · p1(q)

where pd(q) :=
(
qd + qd−1 + · · ·+ q1 − q−1 − q−2 − · · · − q−d

)
and

δ(a, b) :=

{
1 if a divides b,

0 otherwise.

For genus g ≥ 5, the corresponding exact non–weighted point count
∣∣Lg,|∆g |·n(Fq)/ ∼

∣∣ of
the moduli stack Lg,|∆g |·n over Fq can be similarly worked out.
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Given an odd–degree hyperelliptic genus g ≥ 2 curve X over P1
Fq with char(Fq) > 2g+1,

define the height of hyperelliptic discriminant ∆g(X) to be ht(∆g(X)) := qdeg ∆g(X) =
q4g(2g+1)n (see Definition 6.3). Then, we define the counting function Zg,Fq(t)(B) as

Zg,Fq(t)(B) := |{Quasi–admissible odd–degree hyperelliptic curves over P1
Fq with 0 < ht(∆g) ≤ B}|.

We acquire the following sharp enumerations via Theorem 1.7 in §6.

Main Theorem 1.8 (Sharp enumeration on Zg,Fq(t)(B)). If char(Fq) > 2g + 1, then the
function Zg,Fq(t)(B), which counts the number of quasi–admissible odd–degree hyperelliptic
genus g ≥ 2 curves X over P1

Fq ordered by 0 < ht(∆g(X)) = q4g(2g+1)n ≤ B, satisfies:

Z2,Fq(t)(B) = a2,2 ·B
7
10 + a2,4 ·B

3
10 + b2,4,

Z3,Fq(t)(B) = a3,2 ·B
9
14 + a3,4 ·B

2
7 + a3,6 ·B

3
14 + b3,6,

Z4,Fq(t)(B) = a4,2 ·B
11
18 + a4,4 ·B

5
18 + a4,6 ·B

1
4 + a4,8 ·B

1
6 + b4,8,

where δ(a, b) is as in Theorem 1.7, and for each g,m ∈ N≥2, ag,2(q), ag,2m(q, δ(2m, q− 1)),
and bg,2m(q, δ(4, q − 1), δ(6, q − 1), . . . , δ(2m, q − 1)) are explicit rational functions of q as
in Theorem 6.4.

For higher genus g ≥ 5, the sharp enumeration on Zg,Fq(t)(B) rendering a closed-
form formula with non-constant lower order terms can be similarly worked out through
Theorem 6.4. Over number fields, the work of [BG] counts the hyperelliptic curves.

As we have seen by Theorem 1.6, whenever char(Fq) > 2g + 1, counting the number
Zg,Fq(t)(B) of quasi–admissible odd–degree hyperelliptic genus g ≥ 2 curves over P1

Fq
renders an upper bound for counting the number Z ′g,Fq(t)(B) of stable odd hyperelliptic

genus g ≥ 2 curves over P1
Fq with generically smooth fibers. That is,

Z ′g,Fq(t)(B) ≤ Zg,Fq(t)(B) . (2)

Using this, we obtain another application regarding the enumeration of abelian varieties
of dimension 2, i.e., abelian surfaces over global function fields. By the local (i.e.,
infinitesimal) Torelli theorem in [OS, Theorem 2.6 and 2.7] and [Milne, Theorem 12.1],
the Torelli map τ2 : M2 ↪→ A2, which sends a smooth projective genus 2 curve X defined
over a field K to its principally polarized Jacobian (Jac(X), λθ)/K (where λθ is the theta
divisor of Jac(X)), is an open immersion. Furthermore, it is shown in [OU, 4. Theorem]
(see also [Weil, Satz 2]) that given a principally polarized abelian surface (A, λ) over a
field K, after a finite extension of scalars, is isomorphic to the canonically principally
polarized (generalized) Jacobian variety (Jac(X), λθ) of a stable genus 2 curve X. Recall
that if a curve X has good reduction at a place v ∈ S then so does its Jacobian Jac(X).

Theorem 1.9 (Estimate onN2,Fq(t)(B)). If char(Fq) 6= 2, 3, 5, then the function N2,Fq(t)(B),
which counts the number of principally polarized abelian surfaces A = Jac(X) where
X is a stable genus 2 curve with a marked Weierstrass point over P1

Fq ordered by

0 < ht(∆2(X)) = q40n ≤ B, satisfies:

N2,Fq(t)(B) ≤ a2,2 ·B
7
10 + a2,4 ·B

3
10 + b2,4 ,
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a2,2(q) = 2 · (q31 + q30 + q29 − q27 − q26 − q25)

(q28 − 1)
, a2,4(q) = δ(4, q − 1) · 2 · (q13 − q11)

(q12 − 1)
,

b2,4(q) = −2 · (q31 + q30 + q29 − q27 − q26 − q25)

(q28 − 1)
− δ(4, q − 1) · 2 · (q13 − q11)

(q12 − 1)
,

where

δ(4, q − 1) :=

{
1 if 4 divides q − 1,

0 otherwise.

Proof. Main Theorem 1.8 combined with Theorem 1.6 provides an explicit upper bound
on the number of stable genus 2 curves with a marked Weierstrass point over P1

Fq with
char(Fq) 6= 2, 3, 5. The upper bound follows from the properties of the Torelli map τ2 as
all principally polarized abelian surfaces are isomorphic to Jacobians of genus 2 curves of
compact type (c.f., [OS, Theorem 2.6 and 2.7] & [OU, 4. Theorem]). �

Organization

In §2, we establish the arithmetic geometric properties of the inertia stack I(X ) of
an algebraic stack X thereby proving the Theorem 1.1 and describing various decom-
positions of the inertia stacks of quotient stacks. In §3, we formulate the Hom stack
Homn(P1,P(~λ)) of rational curves on a weighted projective stack P(~λ) and provide a clear

decomposition of the inertia stack I(Homn(P1,P(~λ))) (i.e., each summand is the Hom

stack Homn(P1,P(~λIg))). In §4, we use the Grothendieck ring of K–stacks K0(StckK)

to acquire the motive
{

Homn(P1,P(~λ))
}

(Proposition 4.5) which provides the class{
I
(

Homn(P1
K ,PK(~λ))

)}
. As a result, we prove Theorem 1.3 and Theorem 1.2. After-

wards in §5, we formulate the moduli stack Lg,|∆g |·n of quasi–admissible hyperelliptic genus
g fibrations over P1 with the hyperelliptic discriminant ∆g via the birational geometry of
surfaces. We use birational geometry to prove Theorem 1.6. Then we compute the related
non–weighted point count of the moduli stack Lg,|∆g |·n over Fq there, proving Theorem 1.7.
In §6, we finally establish the sharp enumerations with precise lower order terms thereby
proving Main Theorem 1.8.

Notation and conventions

In the present paper, schemes/stacks are assumed to be defined over a field K, if K is not
mentioned explicitly or if such scheme is obviously not defined over any field (e.g., Spec Z).
Given a point x of a scheme/stack, κ(x) means the field of definition of x (i.e., the residue
field). Given a group scheme G defined over a field K, then Cl(G) is the set of conjugate
classes of closed points g of G (here, κ(g) is not necessarily K); this in general is a strictly
larger set than the conjugacy class Cl(G(K)) of the group of K-rational points of G.

Here, we use the convention in [Olsson2, §8] that the diagonal of an algebraic stack is
representable (by algebraic spaces). For any T -point x of a stack X , Aut(x) is the group
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of automorphisms of x ∈ X (T ) (defined over T ). We denote Autx to be the automorphism
space (as an algebraic space) of x ∈ X (see (4) in §2).

We identify the Weil divisors and the associated divisorial sheaves implicitly (e.g., if X
is a Cohen-Macaulay scheme, then the canonical divisor KX corresponds to the dualizing
sheaf ωX ∼= O(KX) of X). Given a finite morphism f : X → Y of reduced equidimensional
schemes, a branch divisor of f on Y means the pushforward of the ramification divisor of
f on X. Given a morphism f : X → Y of schemes with an isolated subset Z ⊂ Y (i.e., Y
as a topological space is Z t (Y \ Z) under the Zariski topology), the preimage of Z in X
refers to the components of X with their image supported on Z.

2 Arithmetic geometry of the inertia stack I(X ) of

an algebraic stack X
Given an algebraic stack X defined over a field K, its inertia stack I(X ) is defined as:

1. objects: (x, α) where x ∈ X (T ) for some scheme T (i.e. x : T → X ) and α ∈ Aut(x).

2. morphisms: ψ : (x, α) → (y, β) is given by φ : x → y in Mor(X )(T ) such that
φ ◦ α = β ◦ φ, i.e., β = φ ◦ α ◦ φ−1 .

Also, I(X ) is characterized by the following Cartesian diagram (by [Olsson2, Definition
8.1.17]):

I(X ) X

X X × X .

∆

∆

(3)

Note that if the representable morphism ∆ satisfies a property (such as finite type,
quasi-separated, etc.), then this property is also satisfied for the representable morphism
I(X )→ X . In particular, I(X ) is a X -algebraic space, i.e., I(X )×X T is an algebraic
space for any morphism T → X from a scheme T .

To understand I(X )→ X , we first pay attention to ∆. Given an object x : T → X of
X from a scheme T , recall that the automorphism space Autx of x is defined to be the
fiber product X ×∆ x×x T . This means that S-points of Autx are characterized by pairs
(s, α) of maps s : S → T and automorphisms α : s∗x→ s∗x in the groupoid X (T ). Since
x× x factors through ∆, Autx fits into the following Cartesian diagram:

Autx I(X )

T X .x

(4)

As before, representability of ∆ implies that Autx → T is a morphism of algebraic spaces,
and the group algebraic space structure on Autx lifts, realizing I(X ) as a group algebraic
space over X .

Before proving Theorem 1.1, we recall the definition of a weighted point count of an
algebraic stack X over Fq:
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Definition 2.1. The weighted point count of X over Fq is defined as a sum:

#q(X ) :=
∑

x∈X (Fq)/∼

1

|Aut(x)|
,

where X (Fq)/ ∼ is the set of Fq–isomorphism classes of Fq–points of X (i.e., the set of
non–weighted points of X over Fq), and we take 1

|Aut(x)| to be 0 when |Aut(x)| =∞.

A priori, the weighted point count can be ∞, but when X is of finite type, then
the stratification of X by schemes as in [Behrend, Proof of Lemma 3.2.2] implies that
X (Fq)/ ∼ is a finite set, so that #q(X ) <∞.

We recall the Grothendieck-Lefschetz trace formula for Artin stacks by [Behrend, Sun].

Theorem 2.2 (Theorem 1.1. of [Sun]). Let X be an Artin stack of finite type over Fq.
Let Frobq be the geometric Frobenius on X . Let ` be a prime number different from the
characteristic of Fq, and let ι : Q`

∼→ C be an isomorphism of fields. For an integer i, let
H i
ét,c

(X/Fq ;Q`) be the cohomology with compact support of the constant sheaf Q` on X .
Then the infinite sum regarded as a complex series via ι∑

i∈Z

(−1)i · tr
(

Frob∗q : H i
c(X/Fq ;Q`)→ H i

c(X/Fq ;Q`)
)

(5)

is absolutely convergent to the weighted point count #q(X ) of X over Fq.

When the stack X is a Deligne–Mumford stack of finite type over Fq with affine
diagonal, then the corresponding compactly-supported, `-adic étale cohomology for prime
number ` invertible in Fq is finite dimensional as a Q`-algebra, making the above trace
formula to hold in Q`-coefficients.

We are now ready to prove Theorem 1.1:

Proof of Theorem 1.1. Choose any x ∈ X (Fq)/ ∼. Then the morphism x : Spec(Fq)→ X
factors through a representable morphism x : [Spec(Fq)/Autx] → X . Note that for any
Fq-scheme T and any y, z ∈ X (T ) such that y ∼ xT and z ∼ xT in X (T ), y and z factor
through x and IsomX (y, z) ∼= Isom[Spec(Fq)/Autx](y

′, z′), where y = x ◦ y′ and z = x ◦ z′.
Thus, [Spec(Fq)/Autx] is a substack of X via x.

Now consider I(X )x defined by the following Cartesian square:

I(X )x I(X )

[Spec(Fq)/Autx] X .x

This is a substack of I(X ), and (y, β) ∈ (I(X )x)(Fq) iff y ∼ x in X (Fq). Since x contributes
1 on the unweighted point count |X (Fq)/ ∼ |, it suffices to show that #q(I(X )x) = 1.

Observe that two points (x, α) and (x, β) in I(X )x are equivalent iff β = φ ◦ α ◦ φ−1

for some φ ∈ Aut(x). This holds in general if we replace x by y : U → X that factors thru
x. Thus, I(X )x ∼= [Autx/Autx], where the group space action is the conjugation. Since
the diagonal of X is quasi-separated and of finite type, Autx is a quasi-separated group
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algebraic space of finite type over Fq by Diagram (4); henceforth, Aut(x) = Autx(Fq) is a
finite group since Autx admits a finite stratification by schemes of finite type by [Knutson,
II.6.6]. Moreover, Aut(x, α) is the finite centralizer subgroup CAut(x)(α) ⊂ Aut(x), and the
set (I(X )x)(Fq)/ ∼ is exactly the set Cl(Aut(x)) of orbits of Aut(x) under the conjugation.
Then, the Orbit-Stabilizer Theorem implies that as a set,

Aut(x) ∼=
⊔

α∈Cl(Aut(x))

Aut(x)/CAut(x)(α).

Finally, we can divide the cardinality of both sides by the finite number |Aut(x)|; then
right hand side becomes #q(I(X )x), proving the statement. �

The following Lemma shows that certain nice property of X carries over to I(X ) as
well.

Lemma 2.3. If X is an algebraic stack of finite type with affine finite type diagonal, then
so is I(X ).

Proof. Since X is of finite type with finite type diagonal, I(X ) must be of finite type as
well by Diagram (3). It remains to show that I(X ) has an affine finite type diagonal. This
is equivalent to showing that for any scheme T and any pairs (x, α), (y, β) ∈ I(X )(T ), the
Isom space IsomI(X )((x, α), (y, β)) is an affine T -scheme and is of finite type relative to T
by the following Cartesian diagram:

IsomI(X )((x, α), (y, β)) T

I(X ) I(X )× I(X ).

(x,α)×(y,β)

∆

To see the structure of IsomI(X )((x, α), (y, β)) → T , observe that IsomX (x, y) → T
and Autx → T are affine morphisms of finite type by the conditions on the diagonal of
X . Then IsomI(X )((x, α), (y, β)) is the preimage under the closed subscheme 1x ∈ Autx,
which is of finite type, of a morphism between affine T -schemes:

IsomX (x, y)→ Autx
φ 7→ φ ◦ α ◦ φ−1 ◦ β−1.

Therefore, IsomI(X )((x, α), (y, β)) is an affine T -scheme and is of finite type relative to T
as well. �

In practice, an algebraic stack X can be characterized by its smooth cover U → X by
an algebraic space U (most of the time, U is assumed to be a scheme) with the space of
equivalence relations R, i.e., R is defined via the following Cartesian diagram

R U

U X

s

t
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where s(r) = x and t(r) = y for any directed equivalence relation r : x → y of x, y ∈ U
via r ∈ R. In this case, X ∼= [U/R] (technically, [U/R] is the stackification of the prestack
U/R of groupoids over Sch). Note that the following Cartesian square

R U × U

X X × X

s×t

∆

implies that R is an algebraic space as well, since ∆: X → X ×X is representable. Given
this presentation, we obtain the following presentation of I(X ):

Proposition 2.4. I(X ) ∼= [R∆/(R∆×sR)], where R∆ is defined by the following Cartesian
square:

R∆ R

U U × U.∆

Proof. By [Stacks, Tag 06PR], R∆ (denoted G in loc.cit.) is a smooth cover of I(X ).
To see that R∆ ×I(X ) R∆ is isomorphic to R∆ ×t s R, it suffices to compare their T -
points for any scheme T . Recall by the Cartesian diagram above that any T -point
of R∆ is characterized by a pair (u, r) ∈ U × R where r : u → u. Then, given any
((u1, r1), (u2, r2)) ∈ (R∆×I(X )R∆)(T ), there is τ : u1 → u2 in R(T ) such that τ ◦r1 = r2◦τ .
This gives an element ((u1, r1), τ) ∈ (R∆ ×t s R)(T ). The converse can be recovered, as u2

is the target of r1 and r2 = τ ◦ r1 ◦ τ−1. This establishes the bijection between T -points
of R∆ ×I(X ) R∆ and R∆ ×t s R. �

Sometimes, we will denote R(X ) (resp., R∆(X )) instead of R (resp, R∆) when we
need to emphasize the algebraic stack X in question.

Recall that a quotient stack, denoted [U/G], corresponds to U a scheme with the
action of a group scheme G. In this case, R = U × G with s being the first projection
and t being the G-action map t : (u, g) 7→ g · u. Then R∆ ⊂ U ×G consists of (u, g) with
t(u, g) = g · u = u.

Corollary 2.5. If X ∼= [U/G] is a quotient stack, then I(X ) is also a quotient stack
[R∆/G], where R ∼= U ×G and G acts on R∆ ⊂ R by g · (u, h) = (g · u, ghg−1).

Proof. By the proof of Proposition 2.4, it suffices to show that R∆ ×t s R
∼= R∆ ×G and

that the action map

R∆ ×t s R→ R∆

((u, r), τ) 7→ (t(r), τ ◦ r ◦ τ−1),

which coincides with the second projection of R∆ ×I(X ) R∆, coincides with the conjugate
G-action described above. The isomorphism R∆ ×t s R

∼= R∆ ×G is given by:

R∆ ×G→ R∆ ×t s R

((u, g), h) 7→ ((u, g), (g · u = u, h)).

By the description of the action map above, G acts on R∆ by the conjugation. �
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Now assume that a quotient stack X ∼= [U/G] of finite type has the affine finite type
diagonal. Then, R∆ is not irreducible in general; in fact, not even connected. Since
the image of the second projection π2 : U × G ⊃ R∆ → G can have many irreducible
components Gi, we have the decomposition R∆ = ∪π−1

2 (G ·Gi) (where G acts on itself by
conjugation). Note that when π2(R∆) is disconnected, so is R∆.

Thus, assume furthermore that X is a Deligne–Mumford (DM) stack. Since the
diagonal of X is affine of finite type (by the previous assumption) and formally unramified
(by DM), the diagonal must be finite; this implies that π2(R∆) lies in torsion subset
of G. Instead of stratifying π2(R∆) by G-orbits of its irreducible components as above,
Abramovich-Graber-Vistoli in [AGV, Definition 3.1.5] stratify I(X ) by looking at orders
of automorphism elements: in our language, this induces a coarser stratification of R∆:

R∆(X ) =
⊔

r∈Z>0

R∆,µr(X )

I(X ) =
⊔

r∈Z>0

Iµr(X ) =
⊔

r∈Z>0

[R∆,µr(X )/G]
(6)

where R∆,µr(X ) is the preimage under π2 of the subscheme of order r elements of G.
However, R∆,µr(X ) can still be disconnected with many components of different dimensions.

Instead, assume that we have chosen a nice presentation of X as a quotient stack
[U/G] such that the support of π2(R∆) consists of finitely many closed points of G. In
this case, π2(R∆) is, as a set, a disjoint union of conjugate classes of some closed points
in π2(R∆). Let’s use our initial decomposition of R∆ as above by G-orbits of connected
components of π2(R∆). This induces the following stratification:

Definition 2.6. Let X ∼= [U/G] be a Deligne–Mumford quotient stack of finite type with
affine finite type diagonal and let R∆ be as in Corollary 2.5 such that the support of the
second projection π2(R∆) in G consists of finitely many closed points of G. Then the
decomposition of the inertia stack I(X ) via the conjugacy classes is as follows:

R∆(X ) =
⊔

α∈Cl(G)

R∆,α(X ),

I(X ) =
⊔

α∈Cl(G)

Iα(X ) =
⊔

α∈Cl(G)

[R∆,α(X )/G],

where R∆,α(X ) is the preimage under π2 of a conjugate class α ∈ Cl(G), as a finite subset
of G.

Note that R∆,α = tg∈αR∆,g where R∆,g is the preimage under π2 of g ∈ G; it is the
base change by κ(g)/K of the fixed locus in U of g ∈ G (i.e., every point is fixed under
the action of g). Observe that R∆,hgh−1 = h ·R∆,g, which is itself R∆,g (then h ∈ CG(g))
or is disjoint from R∆,g by the finiteness of π2(R∆). Therefore, Iα(X ) = [R∆,g/CG(g)] for
any generator g ∈ α, i.e. α = G · g.

As a summary, the decomposition in Definition 2.6 is finer than (6) when it exists, but
assumes the finiteness of π2(R∆) ⊂ G as a subset. We will see that weighted projective
stacks (and Hom stacks) defined in §3 satisfy this condition.
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Remark 2.7. When X ∼= [U/G], U, G in Definition 2.6 are defined over a perfect field
K, the condition, that the support of π2(R∆) in G consists of finitely many closed points
of G, is equivalent to the finiteness of the following set:

{g is a geometric point of G | g · u = u for some geometric point u of U} .

When X is Deligne–Mumford and G is an abelian group (such as Gm), this is easy to check.
However, when G is a non-abelian group (examples are GIT constructions of moduli of
smooth/stable curves), this condition puts a restriction on what kind of g can fix an
element of U , even when X is a Deligne–Mumford stack. If g ·u = u, then hgh−1 ·hu = hu,
so that this set above is a union of conjugacy classes as sets. Whenever the centralizer
subgroup scheme CG(g) has lower dimension than G, the conjugacy class (i.e., the orbit
of g under conjugation) forms a positive dimensional subscheme, contained in the set
above. Since the algebraic closure K is infinite, such positive dimensional subschemes
have infinitely many geometric points by Bertini’s Theorem.

3 Hom stack Homn(P1,P(~λ)) of rational curves on a

weighted projective stack

In this section, we formulate the Hom stack Homn(P1,P(~λ)) over a base field K. First,

we recall the definition of a weighted projective stack P(~λ) with the weight ~λ over K.

Definition 3.1. Fix a tuple of nondecreasing positive integers ~λ = (λ0, . . . , λN). The

N -dimensional weighted projective stack P(~λ) = P(λ0, . . . , λN) with the weight ~λ is
defined as a quotient stack

P(~λ) :=
[
(AN+1

x0,...,xN
\ 0)/Gm

]
where ζ ∈ Gm acts by ζ · (x0, . . . , xN ) = (ζλ0x0, . . . , ζ

λNxN ). In this case, the degree of xi’s
are λi’s respectively. A line bundle OP(~λ)(m) is defined to be the line bundle associated

with the sheaf of degree m homogeneous rational functions without poles on AN+1
x0,...,xN

\ 0.

Note that P(~λ) is not an (effective) orbifold when gcd(λ0, . . . , λN) 6= 1. In this case,

the finite cyclic group scheme µgcd(λ0,...,λN ) is the generic stabilizer of P(~λ). When we need

to emphasize the field K of definition of P(~λ), we instead use the notation PK(~λ).

Lemma 3.2. The N-dimensional weighted projective stack P(~λ) = P(λ0, . . . , λN) over
any field K is of finite type with finite type affine diagonal.

Proof. Since the smooth schematic cover AN+1
x0,...,xN

\0 of P(~λ) is of finite type over K, P(~λ)

is of finite type over K as well. It remains to prove the properties of the diagonal of P(~λ).
Choose any T -point x = (x0, . . . , xN) of U := AN+1

K \ 0. The fiber over x of R∆ → U as
in Corollary 2.5 is a proper subgroup scheme of Gm (over T ), which is always affine of

finite type over T . Henceforth, the diagonal of P(~λ) satisfies the desired properties. �
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However, when K = Fp for some prime p, P(1, p) is not Deligne–Mumford, as Aut[0:1]
∼=

µp, which is not formally unramified over Fp. Nevertheless, the following proposition

shows that any P(~λ) behaves well in most characteristics as a tame Deligne–Mumford
stack:

Proposition 3.3. The weighted projective stack P(~λ) = P(λ0, . . . , λN ) is a tame Deligne–
Mumford stack over K if char(K) does not divide λi ∈ N for every i.

Proof. For any algebraically closed field extension K of K, any point y ∈ P(~λ)(K)
is represented by the coordinates (y0, . . . , yN) ∈ AN+1

K
with its stabilizer group as the

subgroup of Gm fixing (y0, . . . , yN ). Hence, any stabilizer group of such K-points is Z/uZ
where u divides λi for some i. Since the characteristic of K does not divide the orders of
Z/λiZ for any i, the stabilizer group of y is K-linearly reductive. Hence, P(~λ) is tame
by [AOV, Theorem 3.2]. Note that the stabilizer groups constitute fibers of the diagonal

∆: P(~λ)→ P(~λ)×K P(~λ). Since P(~λ) is of finite type and Z/uZ’s are unramified over

K whenever u does not divide λi for some i, ∆ is unramified as well. Therefore, P(~λ) is
also Deligne–Mumford by [Olsson2, Theorem 8.3.3]. �

The tameness is analogous to flatness for stacks in positive/mixed characteristic as
it is preserved under base change by [AOV, Corollary 3.4]. Moreover, if a stack X is
tame and Deligne–Mumford, then the formation of the coarse moduli space c : X → X
commutes with base change as well by [AOV, Corollary 3.3].

Example 3.4. When the characteristic of the field K is not equal to 2 or 3, [Hassett2,
Proposition 3.6] shows that one example is given by the proper Deligne–Mumford stack
of stable elliptic curves (M1,1)K ∼= [(Spec K[a4, a6] − (0, 0))/Gm] = PK(4, 6) by using
the short Weierstrass equation y2 = x3 + a4x + a6x, where ζ · ai = ζ i · ai for ζ ∈ Gm

and i = 4, 6. Thus, ai’s have degree i’s respectively. Note that this is no longer true if
characteristic of K is 2 or 3, as the Weierstrass equations are more complicated.

In the proof of Lemma 3.2, we have shown that R∆ → U is proper, implying that
π2(R∆) ⊂ Gm is a proper subgroup scheme, i.e., supported on finitely many closed points.

Thus, we can apply the decomposition in Definition 2.6 to the inertia stack I(P(~λ)):

Proposition 3.5. For any N -dimensional weighted projective stack PK(~λ), Definition 2.6

describes connected components of I(PK(~λ)):

I(PK(~λ)) ∼=
⊔

g∈|(Gm)K |

Pκ(g)(~λIg)

where |(Gm)K | is set of closed points of (Gm)K, Ig is the largest subset of {0, . . . , N}
such that ord(g) divides λi for every i ∈ Ig, and ~λIg is the subtuple of ~λ indexed by
Ig ⊂ {0, . . . , N}.

Note that Ig = Ig′ when ord(g) = ord(g′), as any subgroup of Gm is cyclic. Also, when

|Ig| = 0, then P(~λIg) = ∅ vacuously.
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Proof of Proposition 3.5. It suffices to show that R∆,g is the subspace

{(x0, . . . , xN , g) ∈ (AN+1 \ 0)×Gm | xi = 0 if ord(g) does not divide λi}

as commutativity of Gm implies that CG(g) = Gm for any g ∈ Gm (here, g as a closed
point of Gm in above coordinates is equivalent to taking a Galois orbit of a representative
of g as a κ(g)-point of Gm). Note that this space is a κ(g)-variety as its projection onto
Gm maps to g ∈ Gm. For any g ∈ |(Gm)K |, x = (x0, . . . , xN) ∈ AN+1 is fixed by g iff
gλixi = xi for all i. Whenever gλi 6= 1, xi must be zero. Thus, x lies in the closed
subscheme {xi = 0 : ∀i, gλi 6= 1}, which is exactly the desired subspace. �

We now generalize the Hom stack formulation to P(~λ) as follows:

Proposition 3.6. The Hom stack Homn(P1,P(~λ)) with weight ~λ = (λ0, . . . , λN), which

parameterize degree n ∈ N K-morphisms f : P1 → P(~λ) with f ∗OP(~λ)(1) ∼= OP1(n) over

a base field K with char(K) not dividing λi ∈ N for every i, is a smooth separated tame

Deligne–Mumford stack of finite type with dimK

(
Homn(P1,P(~λ))

)
= |~λ|n + N where

|~λ| :=
N∑
i=0

λi .

Proof. Homn(P1,P(~λ)) is a smooth Deligne–Mumford stack by [Olsson, Theorem 1.1].
It is isomorphic to the quotient stack [T/Gm], admitting a smooth schematic cover

T ⊂
(

N⊕
i=0

H0(OP1(λi · n))

)
\ 0, parameterizing the set of tuples (u0, . . . , uN) of sections

with no common zero (here, we interpret H0(OP1(λi · n)) as an affine space over K of
appropriate dimension, induced by its K-vector space structure). The Gm action on T is
given by ζ · (u0, . . . , uN) = (ζλ0u0, . . . , ζ

λNuN) . Note that

dimT =
N∑
i=0

h0(OP1(λi · n)) =
N∑
i=0

(λi · n+ 1) = |~λ|n+N + 1,

implying that dim Homn(P1,P(~λ)) = |~λ|n+N since dimGm = 1.
As Gm acts on T properly with positive weights λi ∈ N for every i, the quotient stack

[T/Gm] is separated. It is tame as in [AOV, Theorem 3.2] since char(K) does not divide
λi for every i . �

Remark 3.7. In the proof of Proposition 3.6, we showed that Homn(P1,P(~λ)) ∼= [T/Gm]
where T is an open dense Gm-invariant subscheme of ⊕H0(OP1(λi · n)) not containing
zero, where for each i, Gm acts on H0(OP1(λi · n)) with weight λi. In fact, this remains
true even when the characteristic assumption fails, as the arguments still follow. Since
h0(OP1(λi · n)) = nλi + 1, Homn(P1,P(~λ)) is an open substack of P(~Λ) where

~Λ := (λ0, . . . , λ0︸ ︷︷ ︸
nλ0+1 times

, . . . , λN , . . . , λN︸ ︷︷ ︸
nλN+1 times

).

Furthermore, (u0, . . . , uN ) ∈ ⊕H0(OP1(λi ·n)) lies in T iff ui’s have no common zero on P1.

By Lemma 3.2, Homn(P1,P(~λ)) is of finite type with finite type affine diagonal (without
any condition on the base field K) �
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Similar to P(~λ), the inertia stack I(Homn(P1,P(~λ))) admits a clear decomposition

(i.e., each summand is the Hom stack Homn(P1,P(~λIg))) that plays a crucial role.

Proposition 3.8. The inertia stack of the Hom stack Homn(P1,P(~λ)) admits the following

decomposition into connected components as in Definition 2.6, where Ig and ~λIg are the
same as in Proposition 3.5:

I(Homn(P1
K ,PK(~λ))) ∼=

⊔
g∈|(Gm)K |

Homn(P1
κ(g),Pκ(g)(~λIg)).

Note that Homn(P1,P(~λIg)) = ∅ whenever |Ig| ≤ 1, as there are no maps from P1 to

P(~λIg) where the pullback of O(1) to P1 has degree n.

Proof of Proposition 3.8. By Remark 3.7, Homn(P1,P(~λ)) is an open substack of P(~Λ).

Restricting the decomposition of I(P(~Λ)) as in Proposition 3.5 to Homn(P1,P(~λ)),

I(Homn(P1,P(~λ))) ∼=
⊔

g∈|(Gm)K |

[
T ∩ {~u ∈ ⊕H0(OP1(λi · n)) : ui = 0 if gλi 6= 1}/Gm

]
κ(g)

Since ~u ∈ T iff ui’s have no common zeroes, each summand is isomorphic to Homn(P1,P(~λIg)).
�

4 Motive/Point count of Hom and inertia stacks

First, we recall the definition of the Grothendieck ring of algebraic stacks following
[Ekedahl].

Definition 4.1. [Ekedahl, §1] Fix a field K. Then the Grothendieck ring K0(StckK) of
algebraic stacks of finite type over K all of whose stabilizer group schemes are affine is an
abelian group generated by isomorphism classes of K-stacks {X} of finite type, modulo
relations:

• {X} = {Z}+ {X \ Z} for Z ⊂ X a closed substack,

• {E} = {X × An} for E a vector bundle of rank n on X .

Multiplication on K0(StckK) is induced by {X}{Y} := {X ×KY}. There is a distinguished
element L := {A1} ∈ K0(StckK), called the Lefschetz motive.

Given an algebraic K-stack X of finite type with affine diagonal, the motive of X
refers to {X} ∈ K0(StckK).

As the Grothendieck ring K0(StckK) is the universal object for additive invariants, it
is easy to see that when K = Fq, the assignment {X} 7→ #q(X) gives a well-defined ring
homomorphism #q : K0(StckFq) → Q (c.f. [Ekedahl, §2]) rendering the weighted point
count of a stack X over Fq. Note that #q(X ) < ∞ when X is of finite type (see the
discussion right below Definition 2.1).

Since many algebraic stacks can be written locally as a quotient of a scheme by an
algebraic group Gm, the following lemma (a special case of [Ekedahl, §1]) is very useful:
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Lemma 4.2. [HP, Lemma 15] For any Gm-torsor X → Y of finite type algebraic stacks,
we have {Y} = {X}{Gm}−1.

The subsequent proofs involves the following variety of its own interest (a slight
generalization of [FW, Definition 1.1]):

Definition 4.3. Fix m ∈ Z>0 and d1, . . . , dm ≥ 0. Define Poly
(d1,...,dm)
1 as the set of tuples

(f1, . . . , fm) of monic polynomials in K[z] so that

1. deg fi = di for each i, and

2. f1, . . . , fm have no common roots in K.

Since the set Poly
(d1,...,dm)
1 is open inside the affine space (complement of the resul-

tant hypersurface) parameterizing the tuples of monic coprime polynomials of degrees

(d1, . . . , dm), we can endow Poly
(d1,...,dm)
1 with the structure of an affine variety defined

over Z.

Generalizing the proof of [FW, Theorem 1.2] with the correction from [PS, Proposition

3.1.], we find the motive of Poly
(d1,...,dm)
1 :

Proposition 4.4 (Motive of the Poly space Poly
(d1,··· ,dm)
1 over K). Fix 0 ≤ d1 ≤ d2 ≤

· · · ≤ dm. Then,

{
Poly

(d1,··· ,dm)
1

}
=

{
Ld1+···+dm − Ld1+···+dm−m+1 if d1 6= 0

Ld1+···+dm if d1 = 0.

Proof. The proof is analogous to [FW, Theorem 1.2 (1)], with the correction from [PS,
Proposition 3.1.], and is a direct generalization of [HP, Proposition 18]. Here, we recall
the differences to the work in [FW, HP, PS].

Step 1: The space of (f1, . . . , fm) monic polynomials of degree d1, . . . , dm is instead the
quotient Ad1 × · · · × Adm/(Sd1 × · · · × Sdm) ∼= Ad1+···+dm . We have the same filtration

of A
∑
di by R

(d1,...,dm)
1,k : the space of monic polynomials (f1, . . . , fm) of degree d1, . . . , dm

respectively for which there exists a monic h ∈ K[z] with deg(h) ≥ k and monic polyno-
mials gi ∈ K[z] so that fi = gih for any i. The rest of the arguments follow analogously,
keeping in mind that the group action is via Sd1 × · · · × Sdm .

Step 2: Here, we prove that {R(d1,...,dm)
1,k −R(d1,...,dm)

1,k+1 } = {Poly
(d1−k,...,dm−k)
1 ×Ak}. Just as

in [FW], the base case of k = 0 follows from the definition (in fact, loc.cit. shows that the
two schemes are indeed isomorphic). For k ≥ 1, [PS, Proposition 3.1] proves that the map

Ψ: Poly
(d1−k,...,dm−k)
1 × Ak → R

(d1,...,dm)
1,k \R(d1,...,dm)

1,k+1

induces a piecewise isomorphism (where each piece is a locally closed subset, see [PS,
Proposition 3.1] for more details); this immediately implies the claim by the definition of
the Grothendieck Ring.
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Step 3: By combining Step 1 and 2 as in [FW], we obtain{
Poly

(d1,...,dm)
1

}
= Ld1+···+dm −

∑
k≥1

{
Poly

(d1−k,...,dm−k)
1

}
Lk.

For the induction on the class
{

Poly
(d1,...,dm)
1

}
, we use lexicographic induction on the

pair (d1, . . . , dm). For the base case, consider when d1 = 0. Here the monic polynomial
of degree 0 is nowhere vanishing, so that any tuple of polynomials of degree di for i > 1
constitutes a member of Poly

(0,d2,...,dm)
1 , so that Poly

(0,d2,...,dm)
1

∼= Ad2+···+dm .

Now assume that d1 > 0. Then, we obtain{
Poly

(d1,...,dm)
1

}
= Ld1+···+dm −

∑
k≥1

{
Poly

(d1−k,...,dm−k)
1

}
Lk

= Ld1+···+dm −

(
d1−1∑
k=1

(L(d1−k)+···+(dm−k) − L(d1−k)+···+(dm−k)−m+1)Lk + L(d2−d1)+···+(dm−d1)Ld1
)

= Ld1+···+dm −

(
d1−1∑
k=1

(Ld1+···+dm−(m−1)k − Ld1+···+dm−(m−1)(k+1)) + Ld1+···+dm−(m−1)d1

)
= Ld1+···+dm − Ld1+···+dm−m+1.

�

4.1 Motive of Hom stack

Now we are ready to find the class in Grothendieck ring of the Hom stack Homn(P1,P(~λ)):

Proposition 4.5. Fix the weight ~λ = (λ0, . . . , λN) with |~λ| :=
N∑
i=0

λi. Then the motive

of the Hom stack Homn(P1,P(~λ)) in the Grothendieck ring of K–stacks K0(StckK) is
equivalent to{

Homn(P1,P(~λ))
}

=

(
N∑
i=0

Li
)
·
(
L|~λ|n − L|~λ|n−N

)

= L|~λ|n−N ·
(
L2N + · · ·+ LN+1 − LN−1 − · · · − 1

)
where L1 := {A1

K} is the Lefschetz motive.

Proof. Let ~λ = (λ0, . . . , λN) and λi ∈ N for every i with |~λ| :=
N∑
i=0

λi. Then the Hom

stack Homn(P1,P(~λ)) ∼= [T/Gm] is the quotient stack by the proof of Proposition 3.6. By

Lemma 4.2, we have {Homn(P1,P(~λ))} = (L− 1)−1{T}. Henceforth, it suffices to find
the motive {T}, and not worry about the original Gm-action on T . To do so, we need to
reinterpret T as follows.
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Fix a chart A1 ↪→ P1 with x 7→ [1 : x], and call 0 = [1 : 0] and ∞ = [0 : 1]. It comes
from a homogeneous chart of P1 by [Y : X] with x := X/Y away from ∞. Then for any
u ∈ H0(OP1(d)) with d ≥ 0, u is a homogeneous polynomial of degree d in X and Y . By
substituting in Y = 1, we obtain a representation of u as a polynomial in x with degree
at most d. For instance, deg u < d as a polynomial in x if and only if u(X, Y ) is divisible
by Y (i.e., u vanishes at ∞). From now on, deg u means the degree of u as a polynomial
in x. Conventionally, set deg 0 := −∞.

Therefore, T parameterizes a (N + 1)-tuple (f0, . . . , fN) of polynomials in K[x] with
no common roots in K, where deg fi ≤ nλi for each i with equality for some i. We use
this interpretation to construct Φ: T → AN+1 \ 0, Φ(f0, . . . , fN) = (a0, . . . , aN), where ai
is the coefficient of the degree nλi term of fi.

Now, we stratify T by taking preimages under Φ of a stratification of AN+1 \ 0 by
tEJ , where J is any proper subset of {0, . . . , N} and

EJ = {(a0, . . . , aN) | aj = 0 ∀j ∈ J} ∼= GN+1−|J |
m .

Observe that EJ has the natural free GN+1−|J |
m -action, which lifts to Φ−1(EJ) via multi-

plication on Gm-scalars on fi for i /∈ J . The action is free on Φ−1(EJ) as well, so that
Φ|Φ−1(EJ ) is a Zariski-locally trivial fibration with base EJ . Each fiber is isomorphic to

FJ(n~λ) defined below:

Definition 4.6. Fix m ∈ N and ~d := (d0, . . . , dN) ∈ ZN+1
≥0 . Given J ( {0, . . . , N}, FJ(~d)

is defined as a variety consisting of tuples (f0, . . . , fN ) of K-polynomials without common
roots such that

• for any j /∈ J , then fj is monic of degree nλj, and

• for any j ∈ J , then deg fj < nλj (fj is not necessarily monic).

If instead J = {0, . . . , N}, then we define FJ(~d) := ∅

This implies that {Φ−1(EJ)} = {EJ}{FJ(n~λ)} = (L− 1)N+1−|J |{FJ(n~λ)}. Since

{T} =
∑

J({0,...,N}

{Φ−1(EJ)} =
∑

J({0,...,N}

{EJ}{FJ(n~λ)}, (7)

it suffices to find {FJ(n~λ)} as a polynomial of L.

Proposition 4.7. {FJ(n~λ)} = {Poly
(nλ0,··· ,nλN )
1 } =

(
L|~λ|·n − L|~λ|·n−N

)
, where |~λ| :=∑

i λi . In other words, {FJ(n~λ)} only depends on n~λ .

Proof. Set di := nλi > 0 for the notational convention. Up to SN+1-action on {0, . . . , N}
(forgetting that λ0 ≤ · · · ≤ λN ), consider instead F〈m〉(~d) with 〈m〉 = {0, · · · ,m− 1} and

~d = (d0, · · · , dN) with |~d| :=
N∑
i=0

di. We now want to show that

{F〈m〉(~d)} = {Poly
(d0,··· ,dN )
1 } =

(
L|~d| − L|~d|−N

)
. (8)
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In order to prove this, we first check that if we set di = 0 for some i ≥ m, then

{F〈m〉(~d)} = {Poly
(d0,··· ,dN )
1 } = L|~d|.

To see this, note that i 6∈ 〈m〉, so that fi is monic of degree di = 0 for any (f0, . . . , fN) ∈
F〈m〉(~d); so fi = 1. Therefore, the common root condition from Definition 4.6 is vacuous,

so that {F〈m〉(~d)} = L|~d| (as the space of monic polynomials of degree d is isomorphic to
Ad and so is the space of polynomials of degree < d).

We prove equation (8) by lexicographical induction on the ordered pairs (N,m) such
that N > 0 and 0 ≤ m < N + 1. There are two base cases to consider:

1. If m = 0, then 〈0〉 = ∅, so that F∅(~d) ∼= Poly
(d0,...,dN )
1 =: Poly

~d
1 by Definition 4.3.

2. If N = 1, then m is 0 or 1. Note that the m = 0 case follows from above. Now
assume m = 1. Then (f0, f1) ∈ F〈1〉(~d) if and only if deg f0 < d0 and deg f1 = d1 > 0
with f1 monic. Observe that f0 cannot be 0, otherwise f1 has no roots while having
positive degree, which is a contradiction. Since f0 can be written as a0g0 for g0

monic of degree deg f0 and a0 ∈ Gm, F〈1〉(~d) decomposes into the following locally
closed subsets:

F〈1〉(~d) =

d0−1⊔
l=0

Gm × F∅(l, d1) = Gm ×
d0−1⊔
l=0

Poly
(l,d1)
1 .

Therefore,

{F〈1〉(~d)} = {Gm}
d0−1∑
l=0

{
Poly

(l,d1)
1

}
= (L− 1)

(
Ld1 +

d0−1∑
l=1

(Ll+d1 − Ll+d1−1)

)
= (L− 1)(Ld1 + Ld0+d1−1 − Ld1) = (L− 1)Ld0+d1−1

= Ld0+d1 − Ld0+d1−1.

In general, assume that the statement is true for any (N ′,m′) whenever N ′ < N
or N ′ = N and m′ ≤ m. If m + 1 < N + 1, then we want to prove the assertion
for (N,m + 1). We can take the similar decomposition as the base case (1, 1), except

that we vary the degree of fm, which is the (m+ 1)-st term of (f0, . . . , fN) ∈ F〈m+1〉(~d),

and fm can be 0. If fm = 0, then (f0, . . . , f̂m, . . . , fN) have no common roots, so that

(f0, . . . , f̂m, . . . , fN) ∈ F〈m〉(d0, . . . , d̂m, . . . , dN) (and vice versa). Henceforth, as a set,

F〈m+1〉(~d) = F〈m〉(d0, . . . , d̂m, . . . , dN)
⊔

(Gm × F〈m〉(d0, . . . , 0, . . . , dN))⊔(
Gm ×

dm−1⊔
`=1

F〈m〉(d0, . . . , `, . . . , dN)

)
.

By induction,

{
F〈m+1〉(~d)

}
=
{
F〈m〉(d0, · · · , d̂m, · · · , dN)

}
+ (L− 1)

{
F〈m〉(d0, · · · , 0, · · · , dN)

}
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+ (L− 1)
dm−1∑
`=0

{
F〈m〉(d0, · · · , `, · · · , dN)

}
= L|~d|−dm − L~d−dm−N+1 + (L− 1) · L|~d|−dm

+ (L− 1)
dm−1∑
`=1

(
L|~d|−dm+` − L|~d|−dm+`−N

)
= L|~d|−dm − L|~d|−dm−N+1 + L|~d|−dm+1 − L|~d|−dm

+ (L− 1)L(L|~d|−dm − L|~d|−dm−N)(1 + L + · · ·+ Ldm−2)

= L|~d|−dm+1 − L|~d|−dm−N+1 + L(L|~d|−dm − L|~d|−dm−N)(Ldm−1 − 1)

= L|~d|−dm+1 − L|~d|−dm−N+1 + L|~d| − L|~d|−dm+1 − L|~d|−N + L|~d|−dm−N+1

= L|~d| − L|~d|−N .

�

Combining (7) and Proposition 4.7 with
∑

J({0,...,N}
EJ = (AN+1 \ 0), we finally acquire

{Homn(P1,P(~λ))} = {Gm}−1{T} = (L− 1)−1
∑

J({0,...,N}

{EJ}{Poly
(n~λ)
1 }

= (L− 1)−1(LN+1 − 1){Poly
(n~λ)
1 } =

(
N∑
i=0

Li
)
·
(
L|~λ|·n − L|~λ|·n−N

)
.

This finishes the proof of Proposition 4.5.
�

4.2 Point count of Hom stack

Using Proposition 4.5, we immediately obtain the proof of Theorem 1.3, which is about
the weighted point count of the Hom stack Homn(P1

Fq ,PFq(~λ)):

Proof of Theorem 1.3. The Theorem follows as #q : K0(StckFq)→ Q is a ring homomor-
phism with #q(L) = q as L = {A1

Fq}. �

4.3 Point count of Inertia of Hom stack

We compute the class
{
I
(

Homn(P1
K ,PK(~λ))

)}
, which renders the non–weighted point

count of the moduli stack Lg,|∆g |·n over Fq.

Proposition 4.8. Take the same notation as in Proposition 3.5. Then,{
I
(

Homn(P1
K ,PK(~λ))

)}
=

∑
g∈|(Gm)K |

{
Homn(P1

κ(g),Pκ(g)(~λIg))
}
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Proof. This directly follows from Proposition 3.8 and the definition of the Grothendieck
Ring. �

Above definition combined with the proof of Theorem 1.3 gives an algorithm for
computing |Homn(P1,P(~λ))(Fq)/ ∼ |, which is exactly the Theorem 1.2:

Proof of Theorem 1.2. Recall that the multiplicative group F∗q of a finite field Fq is a
cyclic group of order q − 1. By the primitive root condition, we see that ζr ∈ Gm(Fq) iff

r|(q − 1). Nevertheless, λr is exactly the ~λIζr as in Proposition 3.8. This implies that the

substack Homn(P1
κ(ζr)

,Pκ(ζr)(
~λr)) contributes Fq–rational points iff r divides q − 1, hence

the definition of the set R. As ~λr is independent of the choice of a primitive rth root of

unity and there are ϕ(r) number of them, simplifying #q

{
I
(

Homn(P1
K ,PK(~λ))

)}
gives

the desired formula by Theorem 1.1. �

Remark 4.9. Note that writing a closed-form formula for |Homn(P1,P(~λ))(Fq)/ ∼ | is
difficult in general, as Euler ϕ-function is used, the sum is over all possible positive factors
of q− 1, and the length of ~λr can vary. Nevertheless, it is possible to obtain a closed-form
formula by hand for special cases with mild assumptions on q (Theorem 1.7 is a good
example).

5 Moduli stack Lg,|∆g|·n of quasi–admissible odd–degree

hyperelliptic genus g fibrations over P1

Recall that a hyperelliptic curve C is a separable morphism φ : C → P1 of degree 2. In
order to extend the notion of hyperelliptic curve C into family, we first generalize the
notion of rational curve P1 into family.

Definition 5.1. A rational fibration with a marked section is given by a flat proper
morphism h : H → P1 of pure relative dimension 1 with a marked section s′ : P1 → H
such that

1. any geometric fiber h−1(c) is a connected rational curve (so that arithmetic genus is
0),

2. s′(P1) is disjoint from the non-reduced locus of any geometric fiber, and

3. s′(P1) is disjoint from the singular locus of any geometric fiber of H (this implies
that s′(P1) is also disjoint from the singular locus of H).

If the geometric generic fiber of h is a smooth rational curve, then we call (H, h, s′) a
P1-fibration.

We will occationally call (H, h, s′) a rational fibration when there is no ambiguity on
the marked section s′. Note that we allow a rational fibration H to be reducible (when
generic fiber is a nodal chain), and the total space of a P1-fibration can be singular. A
certain double cover of the rational fibration gives us the hyperelliptic genus g fibration
with a marked Weierstrass section.
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Definition 5.2. A hyperelliptic genus g fibration with a marked Weierstrass section
consists of a tuple (X,H, h, f, s, s′) of a rational fibration h : H → P1, a flat proper
morphism f : X → H of degree 2 with X connected and reduced, and sections s : P1 → X
and s′ : P1 → H such that

1. each geometric fiber (h ◦ f)−1(c) is a connected 1–dimensional scheme of arithmetic
genus g,

2. s(P1) is contained in the smooth locus of h ◦ f and is away from the non-reduced
locus of any geometric fiber,

3. s′ = f ◦ s and s(P1) is a connected component of the ramification locus of f (i.e.,
s′(P1) is a connected component of the branch locus of f),

4. if p is a node of a geometric fiber h−1(c), then any q ∈ f−1(p) is a node of the fiber
(h ◦ f)−1(c), and

5. if the branch divisor of f contains a node e of a fiber h−1(t) with t a closed geometric
point of P1, then the branch divisor contains either an irreducible component of
h−1(t) containing e or an irreducible component of the singular locus of H containing
e.

The underlying genus g fibration is a tuple (π := h ◦ f, s) with π : X → P1 a flat proper
morphism with geometric fibers of arithmetic genus g with a marked Weierstrass point
given by s.

Note 5.3. An isomorphism between hyperelliptic genus g fibrations (X1, H1, h1, f1, s1, s
′
1)

and (X2, H2, h2, f2, s2, s
′
2) is given by a pair of isomorphisms α : X1 → X2 and β : H1 → H2

such that

1. h2 ◦ β = h1 and f2 ◦ α = β ◦ f1 (P1–isomorphism criteria), and

2. β ◦ s = s′ (compatibility with sections).

From now on, we only consider non-isotrivial hyperelliptic fibrations, i.e., the underlying
genus g fibrations must be non-isotrivial. Thus, non-isotrivialness will be assumed on
every statement and discussions below.

Recall that a fibration with a section is said to be stable if all of its fibers are stable
pointed curves. This leads to the following definition in the hyperelliptic case:

Definition 5.4. A stable hyperelliptic genus g fibration with a marked Weierstrass section
is a hyperelliptic genus g fibration (X,H, h, f, s, s′) with KX + s(P1) is π-ample. We
assume that X is not isotrivial, i.e., the trivial hyperelliptic fiber bundle over P1 with no
singular fibers.

Moreover, if the geometric generic fiber is smooth, then (X,H, h, f, s, s′) is called a
stable odd hyperelliptic genus g model over P1.

Conditions in the above definition imply that (X, s(P1))/P1 is log canonical. In classical
language, this means that there are no smooth rational curves of self-intersection −1 and
−2 in a fiber without meeting s(P1).
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Example 5.5. Suppose that (X,H, h, f, s, s′) is a stable odd hyperelliptic genus g model
with a marked Weierstrass section. Then, it is possible that f : X → H in a étale
local neighborhood of p ∈ H is the map A2

x,y → A2
x,y/µ2, where µ2 acts on A2

x,y by
(x, y) 7→ (−x,−y). In this case, π can be given by A2

x,y → A1
z by z = xy. Note that H

admits an A1–singularity at p, f−1(p) is a node of a fiber of π, but X is nonsingular. In
general, X and H admit at worst Al–singularities for some l (because geometric fibers
of X are nodal curves), where Au–singularities of surfaces are étale locally given by
w2 + x2 + yu+1 = 0. This follows from the fact that 1–parameter deformations of nodes
create such singularities. Note that on the neighborhood of such an isolated singular point
of H, the branch locus of f is concentrated at the point if it contains the point, which
only appears possibly at singular points of the fibers of h : H → P1.

Example 5.6. Suppose that (X,H, h, f, s, s′) is a stable odd hyperelliptic genus g model
with a marked Weierstrass section over a field K. The goal is to classify singularities of
the branch divisor of f . By the definition, the branch divisor decomposes into B t s′(P1

K),
which is contained in the smooth locus of H by the definition. First, consider a geometric
point c in the intersection B ∩Ht, where t is a geometric point of P1

K and Ht is the fiber
h−1(t). Since the corresponding double cover Xt (which is a fiber over t of h ◦ f) only
admits nodes as singularities, the multiplicity m of B∩Ht at c is at most 2, as ft : Xt → Yt
étale locally near c is given by the equation

Spec(K[y, z]/(z2 − ym))→ Spec(K[y]), where y is the uniformizer of c ∈ Ht.

Since B does not contain any irreducible component of geometric fibers of h (as any
geometric fiber of h ◦ f is reduced), above implies that the multiplicity of B at any
geometric point is at most 2. Thus, the support of B possibly admits plane double
point curve singularities, étale locally of the form y2 − xm = 0 with m ∈ N≥2, on the
geometrically reduced locus of B, and is smooth elsewhere. Those singularities are in fact
Am−1 (curve) singularities.

Example 5.5 and 5.6 illustrate that a general stable odd hyperelliptic genus g model
often gives a mildly singular P1-fibration and mildly singular branch divisor on it. On the
other hand, we could instead consider the hyperelliptic fibrations with smooth P1-bundle
H, but with X and the branch divisor having worse singularities. Then, each fiber of X
is irreducible and is a double cover of P1 branched over 2g + 2 number of points, where
many of these points could collide. For instance, if l branch points collide, then the
preimage has Al−1-singularity on the fiber, given étale locally by an equation y2 − xl = 0 .
Such a curve is called the quasi–admissible hyperelliptic curve, defined in Definition 1.4.
Quasi–admissible hyperelliptic curves over P1

K (which are non-isotrivial) are equivalent to
the following:

Definition 5.7. A hyperelliptic fibration (X,H, h, f, s, s′) is quasi–admissible if for every
geometric point c ∈ C, f restricted to the fibers of X and H is quasi–admissible. We
assume that X is not isotrivial over P1, i.e., all geometric fibers are isomorphic.

Remark 5.8. Observe that the Definitions 5.1, 5.2, 5.4, and 5.7 should be interpreted
as rational / hyperelliptic / stable / quasi–admissible curves over P1

K , instead of a point
Spec K (just as in Definition 1.4). Thus, these definitions can be extended to corresponding
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curves over a general scheme T , assuming that any geometric point t of T has the property
that the characteristic of the residue field is 0 or larger than 2g + 1 (when instead g = 1,
the standard definition of semistable over T is more delicate whenever the characteristic of
geometric point is 2 or 3, and is not analogous to the definitions proposed in this paper).

In particular, a quasi–admissible hyperelliptic fibration (X,H, h, f, s, s′) has the prop-
erty that H is a P1-bundle, and on each geometric fiber of H, each point of the branch
divisor away from s′ has the multiplicity at most 2g . Moreover, X is the double cover of
H branched along the branch divisor (which coincides with the branch locus).

To parameterize such fibrations, we first consider the moduli stack H2g[2g − 1] of
quasi–admissible hyperelliptic genus g curves characterized by [Fedorchuk, Proposition
4.2(1)] :

Proposition 5.9. If p := char(K) is 0 or > 2g + 1, then the moduli stack H2g[2g −
1] of quasi–admissible hyperelliptic genus g curves is a tame Deligne–Mumford stack
isomorphic to P(4, 6, 8, . . . , 4g+2), where a point (a4, a6, a8, . . . , a4g+2) of P(4, 6, 8, . . . , 4g+
2) corresponds to the quasi–admissible hyperelliptic genus g curve with the Weierstrass
equation

y2 = x2g+1 + a4x
2g−1 + a6x

2g−2 + a8x
2g−3 + · · ·+ a4g+2 (9)

Proof. Proof of [Fedorchuk, Proposition 4.2(1)] is originally done when p = 0, so it suffices
to show that the proof in loc.cit. extends to the case when p > 2g + 1 .

When p = 0, the proof of loc.cit. shows that the quasi–admissible hyperelliptic curves
are characterized by the base P1 with the branch locus of degree 2g + 1 on A1 = P1 \∞,
of the form

x2g+1 + a2x
2g + a4x

2g−1 + a6x
2g−2 + a8x

2g−3 + · · ·+ a4g+2 = 0

where a2 = 0 and not all of the rest of ai’s vanish. When p > 2g+1, any monic polynomial
of degree 2g + 1 with not all roots being identical can be written in the same way (via
same method) by replacing x by x − a2

(2g+1)
(this is allowed as 2g + 1 < p is invertible).

Hence, the moduli stack is indeed isomorphic to P(4, 6, 8, . . . , 4g + 2), with a2i’s referring
to the standard coordinates of P(4, 6, 8, . . . , 4g + 2) of degree 2i .

Since p > 2g+1. P(4, 6, 8, . . . , 4g+2) is tame Deligne–Mumford by Proposition 3.3. �

We are now ready to prove Proposition 1.5.

Proof of Proposition 1.5. By the definition of the universal family p, any quasi–admissible
hyperelliptic genus g fibration f : Y → P1 comes from a morphism ϕf : P1 → H2g[2g − 1]
and vice versa. As this correspondence also works in families, the moduli stack Lg
is a substack of Hom(P1,H2g[2g − 1]). As H2g[2g − 1] is tame Deligne–Mumford by
Proposition 5.9, the Hom stack Hom(P1,H2g[2g − 1]) is tame Deligne–Mumford by
Proposition 3.6. Thus, Lg is tame Deligne–Mumford as well.

Since any quasi–admissible hyperelliptic genus g fibration f is not isotrivial, ϕf must
be a non-trivial morphism, i.e., the image of f in H2g[2g− 1]) is 1-dimensional. Since non-
trivialness of a morphism is a clopen condition, the corresponding clopen locus (consisting
of the union of connected components) Hom>0(P1,H2g[2g − 1]) is indeed isomorphic to
Lg. �
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We now have the following arithmetic invariant of the moduli stack Lg,|∆g |·n over Fq.

Corollary 5.10 (Motive and weighted point count of Lg,|∆g |·n over Fq). If char(K) = 0
or > 2g + 1, then the motive of Lg,|∆g |·n in the Grothendieck ring of K–stacks K0(StckK)
is equivalent to

[
Lg,|∆g |·n

]
=

(
2g−1∑
i=0

Li
)
·
(
L| ~λg |n − L| ~λg |n−2g+1

)
= L2g(2g+3)n · (L2g−1 + L2g−2 + · · ·+ L2 + L1 − L−1 − L−2 − · · · − L−2g+2 − L−2g+1).

If K = Fq with char(Fq) > 2g + 1, then

#q

(
Lg,|∆g |·n

)
= q2g(2g+3)n ·(q2g−1 +q2g−2 + · · ·+q2 +q1−q−1−q−2−· · ·−q−2g+2−q−2g+1).

Proof. This follows from combining Proposition 5.9 and Proposition 1.5 with Theorem 1.3.
�

Explicitly via the birational transformation from one family of curves to another, we
construct a geometric transformation from Sg(K) the K–points of the moduli functor
Sg of the stable odd hyperelliptic genus g ≥ 2 models (see Definition 5.4) over P1

with a marked Weierstrass point to Lg(K) the K–points of the moduli functor Lg :=
Hom(P1,H2g[2g − 1] ∼= P(4, 6, 8, . . . , 4g + 2)). In fact, this transformation is injective as
Theorem 1.6 shows.

Proof of Theorem 1.6. The key idea of proof is to construct F by using relative canonical
model, a particular birational transformation from the subject of relative minimal model
program. We prove this in a few steps, beginning with a preliminary step. We construct
and verify properties of F in the other steps:

Step 1. Log canonical singularities and log canonical models. The main reference
here is [Fujino] when char(K) = 0, and [Tanaka, §5–6] when char(K) 6= 0, noting that
both references deal with algebraically closed fields instead.

First, we need the following definition for types of singularities of a pair (S,D) of a
normal K–surface S and an effective R–divisor D on S:

Definition 5.11. ([Fujino, §2.4], [Tanaka, Definition 5.1]) A pair (S,D) is log canonical
if

1. the log canonical divisor KS +D is R–Cartier,

2. for any proper birational morphism π : W → S and the divisor DW defined by

KW +DW = π∗(KS +D),

then DW ≤ 1, i.e., when writing DW =
∑

i aiEi as a sum of distinct irreducible
divisors Ei, ai ≤ 1 for every i.

Moreover, if a pair (S,D) is defined over a non-algebraically closed field K, then it is
called log canonical if its base-change to K is.
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For instance, if S is smooth and D is a reduced simple normal crossing divisor, then
(S,D) is log canonical. Similarly, if w ∈ R ∩ [0, 1], then (S,wD) is log canonical under
the same assumptions. Note that we cannot consider w > 1 under the same assumptions,
as the weight on each irreducible component of D must be at most 1.

For example, consider a stable odd hyperelliptic genus g model (X,H, h, f, s, s′) over
K, consider the pair (HK , wBK + (s′(P1

K))K) defined over K where the branch divisor of h
decomposes as B t s′(P1

K) and w ∈ R∩ (0, 1/2] is a weight (since B can have components
of multiplicity 2 by Example 5.6, we consider weights at most 1/2). To claim that this pair
is log canonical under additional conditions on w, it suffices to consider neighborhoods of
singular points of HK and support of BK by the above observation.

First, recall that the isolated singularities of HK away from the support of wBK +
(s′(P1

K))K is of type Al′ for some l′ by Example 5.5. Hence, the pair is log canonical at
neighborhoods of such points (in fact, those points are called canonical singular points of
HK). Also, at a singular point c of the support of BK , HK is smooth and BK is reduced
at c but BK admits Al–singularities by Example 5.6. Therefore, the pair has log canonical
singularities whenever w ≤ 1

2
+ 1

l+1
by [Järvilehto] (summariezd in [GHM, Introduction],

where the log canonical threshold is the supremum of values w that makes the pair log
canonical).

To construct a log canonical model, consider a pair (S,D) as the beginning of this
step with projective K–morphism f : S → C into a K–variety C, and assume that D
is Q–divisor and S is Q–factorial. If (S,D) is log canonical with KS +D not f–antinef,
then [HP, Pages 1750–1751] uses key birational geometry results from [Fujino, Tanaka]
to construct the f–log canonical model, defined below. In fact, analogous arguments
from [HP, Proof of Proposition 11] implies that the same procedure can be applied to
f : (S,D)→ C over a field K, leading to the following definition:

Definition 5.12. Suppose that (S,D) is a log canonical pair over a field K where S is a
normal projective Q–factorial surface and D is a Q–divisor. Assume that f : S → C is a
projective morphism into a K–variety C with KS +D not f–antinef. If K is algebraically
closed, then the f–log canonical model is a pair (S ′, D′) with a projective morphism
f ′ : S ′ → C, where

S ′ := Proj
⊕
m∈N

f∗OS(m(KS +D))

and D′ := φ∗D where φ : S → S ′ is the induced birational morphism.
If K is not algebraically closed, then the f–log canonical model is the Gal(K/K)–fixed

locus of the fK–log canonical model of (SK , DK).

Step 2. Construction of faithful F : Sg(K) → Lg(K). Fix any member of Sg(K),
i.e., a stable odd hyperelliptic genus g model (X,H, h, f, s, s′). Denote B t s′(P1

K) to
be the divisorial part of the branch locus of f : X → H (B is also called a branch
divisor in literature). Notice that h restricted to B has degree 2g + 1. By Step 1 above,
(H, 1

2g
B + s′(C)) is log canonical. Take h–log canonical model of (H, 1

2g
B + s′(C))/P1

K to

obtain a birational P1
K–morphism ϕ : (H, 1

2g
B + s′(P1

K))→ (H ′, D′) where H ′ is a rational

fibration over K and D′ is a R–divisor of H ′ defined over K (c.f. Definition 5.12). Since
the only canonical rational curve, defined over an algebraically closed field with 1

2g
weights

on (2g + 1) points and weight 1 on another point, is a smooth rational curve where the
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point of weight 1 is distinct from the other points (of weight 1
2g

), H ′ is a P1–bundle (given

by h′ : H ′ → P1
K). This description shows that D′ decomposes into 1

2g
A′+T ′ where A′ is a

divisor of H ′ and T ′ consists of weight 1 points on each geometric fiber of H ′/P1
K . Thus,

T ′ comes from a section t′ of h′ . We will show that H ′ is the P1–fibration associated to
the desired quasi–admissible hyperelliptic genus g fibration.

To finish the construction of the quasi–admissible fibration, take the Stein factorization
of ϕ ◦ f . This gives a finite morphism f ′ : X ′ → H ′ and a morphism ψ : X → X ′ with
geometrically connected fibers such that ϕ◦f = f ′◦ψ . Since f is finite of degree 2 and ϕ is
birational, f ′ is finite of degree 2 and ψ is birational. Moreover, B′ := A′+T ′ is the branch
locus of f ′ . By calling t to be the unique lift of t′ on h′◦f ′, (X ′, H ′, h′, f ′, t, t′) is the desired
quasi–admissible hyperelliptic fibration. Define F(X,H, h, f, s, s′) := (X ′, H ′, h′, f ′, t, t′).

To see that F is faithful, suppose that there are two isomorphisms

(αi, βi) : (X1, H1, h1, f1, s1, s
′
1)→ (X2, H2, h2, f2, s2, s

′
2)

between stable odd hyperelliptic genus g models that induce the same isomorphism under
F :

(α′, β′) : F(X1, H1, h1, f1, s1, s
′
1)→ F(X2, H2, h2, f2, s2, s

′
2).

Denote (X ′j, H
′
j, h
′
j, f
′
j, tj, t

′
j) = F(Xj, Hj, hj, fj, sj, s

′
j) for j = 1, 2 . From the construction

of F shown above, induced morphisms Xj → X ′j and Hj → H ′j are birational for each j.
Since they are separated varieties over K, (α1, β1) must be equal to (α2, β2) , hence F is
faithful.

Step 3. Fullness of F . Given any isomorphism ψ between (X ′i, H
′
i, h
′
i, f
′
i , ti, t

′
i)’s in

Lg(K) as images of (Xi, Hi, hi, fi, si, s
′
i) ∈ Sg(K) under F , notice that h′i’s and h′i ◦ f ′i ’s

have smooth geometric generic fibers for i = 1, 2 and ψ comes in pairs of isomorphisms
ψ1 : X ′1 → X ′2 and ψ2 : H ′1 → H ′2 (so denote ψ = (ψ1, ψ2)). Then, ψ lifts to a pair
of birational maps ψ = (ψ1, ψ2) between Xi’s and Hi’s which induce isomorphisms on
geometric generic fibers and irreducible components of any geometric fiber meeting the
sections si’s or s′i’s. To claim that those extend to isomorphisms that induce ψi’s, it
suffices to understand geometric properties of related moduli stacks, as we claim that ψi’s
can be interpreted as an element of Isom spaces of such stacks.

Observe first that for each i = 1, 2, Hi is a Z/2Z–quotient of Xi, and KXi + si(P1
K)

is ample over P1
K by the defintion. Since the branch divisor of fi is Bi t s′i(P1

K), the log
canonical divisor KHi + 1

2
Bi + s′i(P1

K) is also ample over P1
K as f ∗i (KHi + 1

2
Bi + s′i(P1

K)) =
KXi + si(P1

K). Since Xi admits nodes as the only singularities of geometric fibers, Bi on
each fiber has multiplicity at most 2 at any K–points in the support. Therefore, fibers of
the pair (Hi,

1
2
Bi + s′i(P1

K)) are ((1
2
, 2g + 1), (1, 1))–stable curves of genus 0 in the sense

of [Hassett, §2.1.3], meaning that Hi for each i is a family of such curves over P1
K . Note

that the moduli stack M0,(( 1
2
,2g+1),(1,1)) of ((1

2
, 2g + 1), (1, 1))–stable curves of genus 0

is a proper (so separated) Deligne–Mumford stack (it easily follows from loc.cit. and
[Hassett, Theorem 2.1]), and Hi is realized as αi : P1

K →M0,(( 1
2
,2g+1),(1,1)). Since there is a

nonempty open subset U ⊂ P1
K such that ψ2 induces an isomorphism between h−1

i (U)’s, ψ2

is an element of IsomM
0,(( 12 ,2g+1),(1,1))

(α1, α2)(U). Then, separatedness of M0,(( 1
2
,2g+1),(1,1))

implies that ψ2 extends to an isomorphism between Hi’s.
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A similar argument shows that ψ1 also extends to an isomorphism between Xi’s
(as Hg,1 ⊂ Mg,1 is a separated Deligne–Mumford stack by [Knudsen]), so it suffices to
show that ψi’s commute with fi’s and induce ψ. The commutativity of ψi’s follows
because Hi’s are Z/2Z–quotients of Xi’s and any isomorphism between families of stable
hyperelliptic curves with marked Weierstrass points commute with Z/2Z–actions. Because
the birational morphisms Xi → X ′i and Hi → H ′i for any i contract all but irreducible
components of fibers over P1

K meeting marked sections, ψ := (ψ1, ψ2) induce ψ as well.
Henceforth, ψ maps to ψ under F , proving that F is full. �

Remark 5.13. Due to log abundance being a conjecture for higher dimensions, which
is a key ingredient of the existence of log canonical models (c.f. [HP, Remark 13]), it is
unclear whether F in the proof above extends to a functor from the moduli of stable odd
hyperelliptic genus g models to Lg. If it extends, we expect the functor to be still fully
faithful, as opposed to [HP, Remark 13] for birational transformations between semistable
elliptic surfaces and stable elliptic curves over P1. The key obstruction on [HP, Remark
13], assuming that the functor discussed in loc.cit. (which is an equivalence) extends, is
that the essential surjectivity may not hold on the extension, whereas the functor from
Theorem 1.6 is not even essentially surjective to begin with.

5.1 Hyperelliptic discriminant ∆g of quasi–admissible hyperel-
liptic genus g fibration

As we consider the algebraic surfaces X as fibrations in genus g curves over P1, the
discriminant ∆g(X) is the basic invariant of X. For the quasi–admissible hyperelliptic
genus g fibrations over P1, we have the work of [Lockhart, Liu] which describes the
hyperelliptic discriminant ∆g(X).

Definition 5.14. [Lockhart, Definition 1.6, Proposition 1.10] The hyperelliptic discrimi-
nant ∆g of the monic odd–degree Weierstrass equation y2 = x2g+1 + a4x

2g−1 + a6x
2g−2 +

a8x
2g−3 + · · ·+ a4g+2 over a base field K with char(K) 6= 2 is

∆g = 24g ·Disc(x2g+1 + a4x
2g−1 + a6x

2g−2 + · · ·+ a4g+2)

which has deg(∆g) := |∆g| = 4g(2g + 1) formally when we associate each variable ai with
degree i.

Note that when g = 1, the discriminant ∆1 of the short Weierstrass equation y2 =
x3 + a4x+ a6 coincides with the usual discriminant −16(4a3

4 − 27a2
6) of an elliptic curve.

We can now formulate the moduli stack Lg,|∆g |·n of quasi–admissible fibration over P1 with
a fixed discriminant degree |∆g| · n = 4g(2g + 1)n and a marked Weierstrass point:

Proposition 5.15. Assume char(K) = 0 or > 2g + 1. Then, the moduli stack Lg,|∆g |·n
of quasi–admissible hyperelliptic genus g fibrations over P1

K with a marked Weierstrass
point and a hyperelliptic discriminant of degree |∆g| · n = 4g(2g + 1)n over a base field
K is the tame Deligne–Mumford Hom stack Homn(P1,H2g[2g − 1]) parameterizing the

K-morphisms f : P1 → H2g[2g− 1] with H2g[2g− 1] ∼= P( ~λg) = P(4, 6, 8, . . . , 4g+ 2) such
that f ∗OP(~λg)(1) ∼= OP1(n) with n ∈ N .
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r ϕ(r) g = 2 g = 3 g = 4

1, 2 1 (4, 6, 8, 10) (4, 6, 8, 10, 12, 14) (4, 6, 8, 10, 12, 14, 16, 18)

3 2 – (6, 12) (6, 12, 18)

4 2 (4, 8) (4, 8, 12) (4, 8, 12, 16)

6 2 – (6, 12) (6, 12, 18)

8 4 – – (8, 16)

Table 1: Table of all tuples (~λg)r of length at least two for low genus g = 2, 3, 4. Entry

has – when (~λg)r has length zero or one.

Proof. Since deg f ∗OP(~λg)(1) = n is an open condition, Homn(P1,H2g[2g − 1]) is an

open substack of Hom(P1,H2g[2g − 1]). Now, it suffices to show that deg f = n (i.e.,
deg f ∗OP( ~λg)(1) = n) if and only if the discriminant degree of the corresponding quasi–

admissible fibration is 4g(2g+1)n. Note that deg f = n if and only if the quasi–admissible
fibration is given by the Weierstrass equation

y2 = x2g+1 + a4x
2g−1 + a6x

2g−2 + · · ·+ a4g+2

where ai’s are sections of O(in), since ai’s represent the coordinates of P(4, 6, . . . , 4g + 2).
Then by Definition 5.14, it is straightforward to check that ∆g has the discriminant degree
4g(2g + 1)n. �

Now we are ready to count the number |Lg,|∆g |·n(Fq)/ ∼ | of Fq-isomorphism classes of
quasi–admissible genus g fibrations over P1

Fq :

Proof of Theorem 1.7. By Theorem 1.2, for a fixed g, it suffices to understand when a
connected component Homn(P1,P((~λg)r)) (indexed by r) of I(Lg,|∆g |·n) is nonempty for
~λg = (4, 6, . . . , 4g + 2); this is equivalent to finding r such that the subtuple (~λg)r has
length at least two. Table 1 describes all such possible r’s for given low values of g = 2, 3, 4:

Summing the weighted point counts of Hom stacks from Proposition 4.5 into Theo-
rem 1.2 gives the desired formula, where we use the division function δ(r, q−1) (defined in

Theorem 1.7) to indicate that we take the contribution of #q(Homn(P1,P(~λr))) whenever
r ∈ R (i.e., r divides q − 1).

The same method directly applies when g ≥ 5. �

6 Counting odd–degree hyperelliptic curves over P1
Fq

Focusing upon the global function fields Fq(t), we need to fix an affine chart A1
Fq ⊂ P1

Fq
and its corresponding ring of functions Fq[t] interpreted as the ring of integers of the field
of fractions Fq(t) of P1

Fq . This is necessary since Fq[t] could come from any affine chart of

P1
Fq , whereas the ring of integers OK for the number field K is canonically determined.

We denote ∞ ∈ P1
Fq to be the unique point not in the chosen affine chart.
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Note that for a maximal ideal p in OK , the residue field OK/p is finite. One could
think of p as a point in Spec OK and define the height of a point p.

Definition 6.1. Define the height of a point p to be ht(p) := |OK/p| the cardinality of
the residue field OK/p.

We recall the notion of bad reduction & good reduction:

Definition 6.2. Let C be an odd–degree hyperelliptic genus g curve over K given by the
odd–degree Weierstrass equation

y2 = x2g+1 + a4x
2g−1 + a6x

2g−2 + · · ·+ a4g+2,

with a2i+2 ∈ OK for every 1 ≤ i ≤ 2g. Then C has bad reduction at p if the fiber Cp over
p is a singular curve of degree 2g + 1. The prime p is said to be of good reduction if Cp is
a smooth hyperelliptic genus g curve.

Consider the case when K = Fq(t), and a quasi–admissible model f : X → P1
Fq (a

quasi–admissible fibration with smooth geometric generic fiber). For simplicity, assume
that X does not have a singular fiber over ∞ ∈ P1

Fq . Note that the primes pi of bad
reductions of f are precisely points of the discriminant divisor ∆g(X) =

∑
ki · pi, as the

fiber Xpi is singular over ∆g(X). When K = Fq(t) the global function field, we have
∆g(X) ∈ H0(P1,O(4g(2g + 1)n)) by the proof of Proposition 5.15.

Definition 6.3. The height ht(∆g(X)) of a discriminant divisor ∆g(X) in P1
Fq is qdeg ∆g(X).

As a convention, if a divisor ∆g(X) is given as a zero section of any line bundle, then set
ht(∆g(X)) =∞.

In general, the height of a hyperelliptic discriminant ∆g(X) of any X (without
nonsingular fiber assumption over ∞) is defined as q|∆g(X)| where deg(∆g(X)) := |∆g(X)|
is equal to 4g(2g + 1)n. As the hyperelliptic discriminant divisor ∆g(X) is an invariant of
a quasi–admissible model f : X → P1, we count the number of Fq–isomorphism classes
of quasi–admissible hyperelliptic genus g fibrations on the function field Fq(t) by the
bounded height of ∆g(X)

Zg,Fq(t)(B) := |{Quasi–admissible odd–degree hyperelliptic curves over P1
Fq with 0 < ht(∆g) ≤ B}|.

We now prove the sharp enumerations on Zg,Fq(t)(B).

Theorem 6.4 (Sharp enumeration on Zg,Fq(t)(B)). If char(Fq) > 2g+1, then the function
Zg,Fq(t)(B), which counts the number of quasi–admissible odd–degree hyperelliptic genus
g ≥ 2 curves X over P1

Fq ordered by 0 < ht(∆g(X)) = q4g(2g+1)n ≤ B, satisfies:

Z2,Fq(t)(B) = 2
(q28 · p3(q))

(q28 − 1)
·
(
B

7
10 − 1

)
+ 2δ(4, q − 1)

(q13 − q11)

(q12 − 1)
·
(
B

3
10 − 1

)

Z3,Fq(t)(B) = 2
(q54 · p5(q))

(q54 − 1)
·
(
B

9
14 − 1

)
+ 2δ(4, q − 1)

(q26 + q25 − q23 − q22)

(q24 − 1)
·
(
B

2
7 − 1

)
+ 4δ(6, q − 1)

(q19 − q17)

(q18 − 1)
·
(
B

3
14 − 1

)
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Z4,Fq(t)(B) = 2
(q88 · p7(q))

(q88 − 1)
·
(
B

11
18 − 1

)
+ 2δ(4, q − 1)

(q40 · p3(q))

(q40 − 1)
·
(
B

5
18 − 1

)
+ 4δ(6, q − 1)

(q36 · p2(q))

(q36 − 1)
·
(
B

1
4 − 1

)
+ 4δ(8, q − 1)

(q25 − q23)

(q24 − 1)
·
(
B

1
6 − 1

)
,

where pd(q) :=
(
qd + qd−1 + · · ·+ q1 − q−1 − q−2 − · · · − q−d

)
and

δ(a, b) :=

{
1 if a divides b,

0 otherwise.

Proof of Main Theorem 1.8 for g = 2. Knowing the number of Fq-isomorphism classes of
quasi–admissible genus 2 fibrations of discriminant degree 40n over Fq is

|L2,40n(Fq)/ ∼ | = 2q28n · (q3 + q2 + q1 − q−1 − q−2 − q−3) + 2δ(4, q − 1)q12n · (q1 − q−1)

by Theorem 1.7, we explicitly compute Z2,Fq(t)(B) as the following,

Z2,Fq(t)(B) =

⌊
logqB

40

⌋∑
n=1

|L2,40n(Fq)/ ∼ |

=

⌊
logqB

40

⌋∑
n=1

2 · q28n · p3(q) + 2δ(4, q − 1)q12n · (q1 − q−1)

= 2 · p3(q)

⌊
logqB

40

⌋∑
n=1

q28n + 2δ(4, q − 1)(q1 − q−1)

⌊
logqB

40

⌋∑
n=1

q12n

≤ 2 · p3(q)
(
q28 + · · ·+ q28·( logqB

40
)
)

+ 2δ(4, q − 1)(q1 − q−1)
(
q12 + · · ·+ q12·( logqB

40
)
)

= 2 · p3(q)

(
q28 · (B 7

10 − 1)

(q28 − 1)

)

+ 2δ(4, q − 1)(q1 − q−1)

(
q12 · (B 3

10 − 1)

(q12 − 1)

)

= 2
(q28 · p3(q))

(q28 − 1)
·
(
B

7
10 − 1

)
+ 2δ(4, q − 1)

(q13 − q11)

(q12 − 1)
·
(
B

3
10 − 1

)
.

On the fourth line of the equations above, inequality becomes an equality if and only
if n := logqB

40
∈ N, i.e., B = q40n with n ∈ N. �

As there are non-hyperelliptic curves for higher genus g ≥ 3 curves, Zg≥3,Fq(t)(B)
counts the quasi–admissible hyperelliptic genus g ≥ 3 curves over P1

Fq only.
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Proof of Main Theorem 1.8 for g = 3. Knowing the number of Fq-isomorphism classes of
quasi–admissible hyperelliptic genus 3 fibrations of discriminant degree 84n over Fq is
|L3,84n(Fq)/ ∼| = 2 · q54n · (q5 + · · ·+ q1 − q−1 − · · · − q−5) + 2δ(4, q − 1)q24n · (q2 + q1 −
q−1− q−2) + 4δ(6, q− 1)q18n · (q1− q−1) by Theorem 1.7, we explicitly compute Z3,Fq(t)(B)
similarly as genus 2 case. �

Proof of Main Theorem 1.8 for g = 4. Knowing the number of Fq-isomorphism classes of
quasi–admissible hyperelliptic genus 4 fibrations of discriminant degree 144n over Fq is
|L4,144n(Fq)/ ∼| = 2 · q88n · (q7 + · · ·+ q1 − q−1 − · · · − q−7) + 2δ(4, q − 1)q40n · (q3 + q2 +
q1− q−1− q−2− q−3) + 4δ(6, q− 1)q36n · (q2 + q1− q−1− q−2) + 4δ(8, q− 1)q24n · (q1− q−1)
by Theorem 1.7, we explicitly compute Z4,Fq(t)(B) similarly. �

Acknowledgments. The authors are indebted to Ariyan Javanpeykar for explaining
to us the open immersion property of the Torelli map restricted to the hyperelliptic locus.
We also thank Brian Conrad, Qing Liu and Dino Lorenzini for useful comments on a
draft of this paper as well as Dori Bejleri, Jesse Wolfson and Craig Westerland for helpful
discussions. We are also grateful to the anonymous referee for a thorough reading of our
paper and many suggestions which improved the paper. Jun-Yong Park was supported
by the ARC grant DP210103397, the Max Planck Institute for Mathematics and the
Institute for Basic Science in Korea (IBS-R003-D1). Changho Han acknowledges the
partial support of the Natural Sciences and Engineering Research Council of Canada
(NSERC), [PGSD3-487436-2016].

References

[AGV] D. Abramovich, T. Graber and A. Vistoli, Gromov–Witten Theory of Deligne–
Mumford Stacks, American Journal of Mathematics, 130, No. 5, (2008): 1337–1398.

[AOV] D. Abramovich, M. Olsson and A. Vistoli, Tame stacks in positive characteristic,
Annales de l’Institut Fourier, 58, No. 4, (2008): 1057–1091.

[Behrend] K. A. Behrend, The Lefschetz trace formula for algebraic stacks, Inventiones
mathematicae, 112, No. 1, (1993): 127–149.

[BG] M. Bhargava and B. Gross, The average size of the 2-Selmer group of Jacobians of
hyperelliptic curves having a rational Weierstrass point, Automorphic representations
and L-functions, The Studies in Mathematics, 22, Tata Institute of Fundamental
Research, Mumbai (2013): 23—91.

[de Jong] A. J. de Jong, Counting elliptic surfaces over finite fields, Moscow Mathematical
Journal, 2, No. 2, (2002): 281–311.

[DM] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus,
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235, Birkhäuser Boston, (2005): 169—192.

[HP] C. Han and J. Park, Arithmetic of the moduli of semistable elliptic surfaces, Mathe-
matische Annalen, 375, No. 3–4, (2019): 1745–1760.

[Järvilehto] T. Järvilehto, Jumping numbers of a simple complete ideal in a two-
dimensional regular local ring, Memoirs of the American Mathematical Society,
214, No. 1009, (2011).

[Knudsen] F. F. Knudsen, The projectivity of the moduli space of stable curves II, III,
Mathematica Scandinavica, 52, No. 2, (1983): 161–199, 200–212.

[Knutson] D. Knutson, Algebraic Spaces, Lecture Notes in Mathematics, 203, Springer-
Verlag, Berlin (1971).
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