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SOLOMON LEFSCHETZ

September 3, 1884-October 5, 1972

BY PHILLIP GRIFFITHS, DONALD SPENCER,

AND GEORGE WHITEHEAD1

SOLOMON LEFSCHETZ was a towering figure in the math-
ematical world owing not only to his original contribu-

tions but also to his personal influence. He contributed to
at least three mathematical fields, and his work reflects
throughout deep geometrical intuition and insight. As man
and mathematician, his approach to problems, both in life
and in mathematics, was often breathtakingly original and
creative.

PERSONAL AND PROFESSIONAL HISTORY

Solomon Lefschetz was born in Moscow on September 3,
1884. He was a son of Alexander Lefschetz, an importer,
and his wife, Vera, Turkish citizens. Soon after his birth,
his parents left Russia and took him to Paris, where he
grew up with five brothers and one sister and received all
of his schooling. French was his native language, but he
learned Russian and other languages with remarkable fa-
cility. From 1902 to 1905, he studied at the Ecole Centrale
des Arts et Manufactures, graduating in 1905 with the de-
gree of mechanical engineer, the third youngest in a class
of 220. His reasons for entering that institution were com-
plicated, for as he said, he had been "mathematics mad"
since he had his first contact with geometry at thirteen.
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Since he was not a French citizen, he could neither see
nor hope for a career as a pure mathematician. The next
best thing was engineering because, as he believed, it used
a lot of mathematics.

Upon graduating in 1905, Lefschetz decided to go to the
United States, for a time at least, with the general purpose
of acquiring practical experience. First, he found a job at
the Baldwin Locomotive Works near Philadelpia. But he
was particularly attracted to electrical engineering, which,
at that time, was a nonexistent specialty at the Ecole Centrale.
In view of this, in January 1907 he became an engineering
apprentice in a regular course at the Westinghouse Elec-
tric and Manufacturing Company in Pittsburgh. The course
consisted of being shifted from section to section every few
weeks. He wound up in the transformer testing section in
the late fall of 1907, and in mid-November of that year, he
was the victim of a testing accident, as a consequence of
which he lost both hands.2 After some months of convales-
cence, he returned to the Westinghouse Company, where,
in 1909, he was attached to the engineering department
in the section concerned with the design of alternating-
current generators.

Meanwhile, Lefschetz had become increasingly dissatis-
fied with his work there, which seemed to him to be ex-
tremely routine. So he resumed, first as a hobby, his math-
ematical studies that had been neglected since 1903. After
a while he decided to leave engineering altogether and
pursue mathematics. He left the Westinghouse Company
in the fall of 1910 and accepted a small fellowship at Clark
University, Worcester, Massachusetts, enrolling as a gradu-
ate student. The mathematical faculty consisted of three
members: William Edward Story, senior professor (higher
plane curves, invariant theory); Henry Taber (complex analysis,
hypercomplex number systems); and Joseph de Perott (number
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theory). At the Ecole Centrale there were two professors
of mathematics, Emile Picard and Paul Appel, and each
had written a three-volume treatise: Analysis (Picard) and
Analytical Mechanics (Appel). Lefschetz plunged into these
and, with a strong French training in basic mathematics,
was all set to attack a research topic suggested by Professor
Story, namely, to find information about the largest num-
ber of cusps that a plane curve of given degree may pos-
sess. Lefschetz made an original contribution to this prob-
lem and obtained his Ph.D. summa cum laude in 1911. In
the Record of Candidacy for the Ph.D., it is stated by Henry
Taber that it was an "excellent examination, the best ever
passed by any candidate in the department," and signed by
him under the date June 5, 1911.

Clark University had a fine library with excellent work-
ing conditions, and Lefschetz made good use of it. By the
summer of 1911 he had vastly improved his acquaintance
with modern mathematics and had laid a foundation for
future research in algebraic geometry. He had also be-
come more and more closely associated with another math-
ematics student at Clark, Alice Berg Hayes, who became
his wife on July 3, 1913, in North Brookfield, Massachu-
setts. She was to become a pillar of strength for Lefschetz
throughout the rest of his life, helping him to rise above
his handicap and encouraging him in his work.

Lefschetz' first position after Clark was an assistantship
at the University of Nebraska in 1911; the assistantship was
soon transformed into a regular instructorship. In 1913
he moved to the University of Kansas, passing through the
ranks to become a full professor in 1923. He remained at
the University of Kansas until 1924. Then, in 1924 came
the call to Princeton University, where he was visiting pro-
fessor (1924-25); associate professor (1925-27); full pro-
fessor (1927-33); and from 1933 to 1953, Henry Burchard
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Fine Research Professor, chairman of the Department of
Mathematics 1945-53 and emeritus from 1953.

The years in the Midwest were happy and fruitful ones
for Lefschetz. The almost total isolation played in his de-
velopment "the role of a job in a lighthouse which Einstein
would have every young scientist assume so that he may
develop his own ideas in his own way."3 His two major
ideas came to him at the University of Kansas.

The first idea is described by Lefschetz as follows. Soon
after his doctorate he began to study intensely the two-
volume treatise of Picard-Simart, Fonctions Algebnques deDeux
Variables, and he first tried to extend to several variables
the treatment of double integrals of the second kind found
in the second volume. He was unable to do this directly,
and it led him to a recasting of the whole theory, especially
the topology.4 By attaching a 2-cycle to the algebraic curves
on a surface, he was able to establish a new and unsus-
pected connection between topology and Seven's theory
of the base, constructed in 1906, for curves on a surface.
The development of these and related concepts led to a
Memoire, which was awarded the Bordin Prize by the French
Academy of Sciences in 1919. The translated prize paper
is given in the Bibliography (1921,3). The first half of the
Memoire, with some complements, is embodied in a fa-
mous monograph (1924,1).

The general idea for the second most important contri-
bution also came to Lefschetz in Lawrence, Kansas, and it
is the fixed-point theorem which bears his name. Almost
all of Lefschetz' topology arose from his efforts to prove
fixed-point theorems. In 1912, L. E. J. Brouwer proved a
basic fixed-point theorem, namely, that every continuous
transformation of an n-simplex into itself has at least one
fixed point. In a series of papers, Lefschetz obtained a
much more general result for any continuous transfor-
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mation of a topological space X into itself where the re-
strictions on X were progressively weakened. In 1923, he
proved the theorem for compact orientable manifolds and,
by introducing relative homology groups, he extended it
in 1927 to manifolds with boundary; his theorem then in-
cluded Brouwer's. In 1927, he also proved it for any finite
complex and, in 1936, for any locally connected topologi-
cal space.

In the 1920s and 1930s, as a professor at Princeton Uni-
versity, Lefschetz was wholly occupied with topology, and
he established many of the basic results in algebraic topol-
ogy. For example, he created a theory of intersection of
cycles (1925,1; 1926,1), introduced the notion of cocycle (which
he called pseudo-cycle), and proved the Lefschetz duality
theorem (see 1949,1 for an exposition of the fixed-point
theorem and the duality theorem). His Topology was pub-
lished in 1930 (1930,1), and his Algebraic Topology was pub-
lished in 1942 (1942,1). The former was widely acclaimed
and established the name topology in place of the previ-
ously used term analysis situs; the latter was less influential
but secured the use of the name algebraic topology as a re-
placement for combinational topology.5

Lefschetz was an editor of the Annals of Mathematics from
1928 to 1958, and his influence dominated the editorial
policy that made the Annals into a foremost mathematical
journal.

In 1943 Lefschetz became a consultant for the U.S. Navy
at the David Taylor Model Basin near Washington, D.C.
There he met and worked with Nicholas Minorsky, who
was a specialist on guidance systems and the stability of
ships and who brought to Lefschetz' attention the impor-
tance of the applications of the geometric theory of ordi-
nary differential equations to control theory and nonlin-
ear mechanics. From 1943 to the end of his life, Lefschetz'
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main interest was centered around ordinary nonlinear dif-
ferential equations and their applications to controls and
the structural stabilities of systems. Lefschetz was almost
sixty years old when he turned to differential equations,
yet he did original work and stimulated research in this
field as a gifted scientific administrator.

In 1946, the newly established Office of Naval Research
funded a project on ordinary nonlinear differential equa-
tions, directed by Lefschetz, at Princeton University. This
project continued at Princeton for five years past Lefschetz'
retirement from the university in 1953. Meanwhile, the Re-
search Institute for Advanced Study was formed in Balti-
more, Maryland, as a division of the Glen L. Martin Air-
craft Company, and in 1957, Lefschetz established the
Mathematics Center under the auspices of the institute and
was entrusted with the recruitment of five mathematicians
and about ten younger associates. He obtained the coop-
eration of Professor Lamberto Cesari of Purdue University
and appointed Professor J. P. LaSalle of Notre Dame and
Dr. J. K. Hale of Purdue to the group, the former as his
second in command. After some six years it was necessary
to transfer the center elsewhere, and the move, carried out
by LaSalle, resulted in their becoming part of the Division
of Applied Mathematics at Brown University. The group
was later named the Lefschetz Center for Dynamical Sys-
tems. LaSalle was director and Lefschetz became a visiting
professor, traveling there from Princeton once a week.
Lefschetz continued his work at Brown until 1970, two years
before his death.

In 1944, Lefschetz joined the Institute de Mathematicas
of the National University of Mexico as a part-time visiting
professor, and this connection continued until 1966. At
the Institute, he conducted seminars, gave volunteer courses,
and continued his research. He found a number of ca-
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pable young men there and sent several of them to Princeton
University for further advanced training up to the doctor-
ate and beyond. From 1953 to 1966 he spent most of his
winters in Mexico City.

Lefschetz received many honors. He served as president
of the American Mathematical Society in 1935-36. He re-
ceived the Bocher Memorial Prize of the American Math-
ematical Society in 1924, and in 1970 he received the first
award of the Steele Prize, also of the American Mathemati-
cal Society. He received the Antonio Feltrinelli Interna-
tional Prize of the National Academy of Lincei, Rome, in
1956; the Order of the Aztec Eagle of Mexico in 1964; and
the National Medal of Science (U.S.) in 1964. He was
awarded honorary degrees by the University of Prague, Prague,
Czechoslavakia; University of Paris, Paris, France; the Uni-
versity of Mexico; and Brown, Clark, and Princeton univer-
sities. He was a member of the American Philosophical
Society and a foreign member of the Academie des Sci-
ences of Paris, the Royal Society of London, the Academia
Real de Ciencias of Madrid, and the Reale Instituto Lombardo
of Milan.

A symposium in honor of Lefschetz' seventieth birthday
was held in Princeton in 1954,6 and in 1965 an interna-
tional conference in differential equations and dynamical
systems was dedicated to him at the University of Puerto
Rico. The international Conference on Albegraic Geom-
etry, Algebraic Topology and Differential Equations (Geo-
metric Theory), in celebration of the centenary of Lefschetz'
birth, was held at the Centro de Investigation del IPN,
Mexico City, in 1984.

LEFSCHETZ AND ALBEGRAIC GEOMETRY

In order to discuss Lefschetz' contributions to algebraic
geometry, I shall first describe that field and its evolution
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up until the period during which Lefschetz worked. Then
I will give a somewhat more detailed description of some
of his major accomplishments. I will conclude with a few
observations about the impact of his work in algebraic ge-
ometry.

In simplest terms, algebraic geometry is the study of al-
gebraic varieties. These are defined to be the locus of
polynomial equations

Pfa, ...,xN) = 0,.. .,Pr{xx, ...,xN) = 0. (1)

Here the x{ are coordinates in an affine space and the Pa

are polynomials whose coefficients are in any field K. For
our purposes, it will be convenient to take K to be the
complex numbers, as this was the case in classical algebraic
geometry and in almost all of Lefschetz' work. It is worth
noting, however, that he was one of the first to consider
the case where K is an arbitrary algebraically closed field
of characteristic zero. In fact, the so-called Lefschetz prin-
ciple as expanded in his book Algebraic Geometry (1953, 1)
roughly states that any result from the complex case re-
mains valid in this more general situation.

In addition to using complex numbers, it is also conve-
nient to add to the above locus the points at infinity. This
is accomplished by homogenizing the polynomials Pa and
considering the resulting locus V in the complex projec-
tive space PN defined by the homogenized equations. Two
algebraic varieties V and V are to be identified if there is
a rational transformation

that takes V to V and is generically one to one there.
These are called birational transformations, and T estab-
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lishes an isomorphism between the fields K(V) and K(V)
of rational functions on V and V, respectively.

In the nineteenth century the intensive study of alge-
braic curves—that is, algebraic varieties of dimension one—
was undertaken by Abel, Jacobi, Riemann, and others. On
an algebraic curve C given by a single affine equation,

f(x,y) = 0, (2)

in the plane, special objects of interest were the abelian
integrals

\R{x,y)dx, (3)

where R(x,y) is a rational function. For example, the
hyperelleptic integrals

f R(x)dx

are abelian integrals on the hyperelliptic curve y2 = (x - a^ ...
(x-a )• In addition to the indefinite integral (3), abelian
sums

and periods
[ R(x,y)dx,
y

where y is a closed path on C, were of considerable inter-
est. A major reason for studying abelian integrals and their
periods was that these provided an extremely interesting
class of transcendental functions, such as the elliptic func-
tion p(u) defined up to an additive constant by
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f/>(«) dy

It was Riemann who emphasized that studying C up to
birational equivalence is equivalent to studying the abstract
Riemann surface C associated to the curve (2). Assuming
that / is irreducible, in modern terms C is a connected,
complex manifold of dimension one for which there is a
holomorphic mapping

n:C

whose image is C and where n: C —>C is generically one to
one. Viewed as an oriented real two-manifold, the Riemann
surface C has a single topological invariant, its genus g,
and we have the familiar picture

where 8X . . . . , 8 , yx . . . . , y form a canonical basis for
HX(C,Z).

The introduction of C greatly clarifies the study of abe-
lian integrals. For example, in terms of a local holomorphic
coordinate z on C, the rational differential CO = R(x,y)dx
above is given by the expression

where
h(z)dz,
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h(z) =
k=-N

is a meromorphic function. We then say CO is of the first
kind if h(z) is holomorphic in all local coordinate systems,
of the second kind if all residues c_2 = 0, and of the third
kind otherwise. For example, assuming that the a{ are
distinct in (4), the holomorphic differentials on the
hyperelliptic curve f- = (x- a^). . .(x— an) are given by abe-
lian integrals (4) where R(x) is a polynomial of degree at
most \_n-V{\. If the poles of CO are a finite set of points D,
then the cycle yis understood to be a class in HX{C-D,T)
and co is of the second kind whenever its residues

J< = 0, 7 = 0 in H^CZ)
y

are all zero. If S(x,y) is a rational function on C, then
clearly the exact differential dS(x,y) is of the second kind.

Two results that relate the algebraic geometry and topol-
ogy of an algebraic curve are these:

the vector space of differentials of the (5)
first kind has dimension equal to g;

the vector space of differentials of the
second kind modulo exact differentials (6)
has dimension equal to 2g = rank H1(C,Z).

As we shall see, by understanding the topology of an alge-
braic variety, Lefschetz was able to give far-reaching exten-
sions of these results.

Toward the end of the nineteenth century, the study of
algebraic curves was extended by Max Noether and others,
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especially the Italian school led by Castelnuovo, Enriques,
and Severi. In addition, these mathematicians and others
began the systematic study of algebraic curves and alge-
braic surfaces from a projective or geometric point of view.
To them, an algebraic surface S was the generic projection
into P3 of a smooth algebraic surface S lying in a P^. Thus,
S is given by the single affine equation

f(x,y,z) = 0 (7)

and has singularities from a very short list of special types.
A major result was that any algebraic surface has such a
smooth model S, and indeed an understanding was devel-
oped of all smooth models (in the case of curves, the Ri-
emann surface C is unique up to a biholomorphic trans-
formation). Studying Cor Sby geometric methods operation-
ally meant analyzing the various linear systems of divisors
on the curve or surface. The specifics of these are not par-
ticularly relevant here; suffice it to say that little use was made
of the topology and/or analysis on the variety.

Meanwhile, Picard and Poincare in France had under-
taken to extend results such as those in equations (5) and
(6) to algebraic surfaces. Thus, they attempted to classify
both single and double rational integrals

jPdx + Qdy (8)

(9)jJRdxdy

on the surface (7) in much the same way as had been done
for curves. Here P, () and R are rational functions of x, y, and
z and it is assumed that the 1-form P dx + Q dy is closed,
i.e., that
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In this case we may speak both of the indefinite integral
(8) and of its periods, as in the curve case. For the double
integral (9), however, only its periods are defined. These
are expressions

\\ Rdxdy,

where y is a closed 2-cycle in S supported outside the sin-
gular locus of R dx dy.

It is clear that the introduction of homology theory by
Poincare was essential for an understanding of rational in-
tegrals on a surface, and Poincare's work on "analysis si-
tus" was done while Picard was midstream in his own in-
vestigations. In what remains one of the "tour de forces" in
the history of mathematics, over a period of about twenty
years, Picard was able to arrive at a preliminary under-
standing of both single and double rational integrals on
an algebraic surface. These investigations are detailed in
the two volumes of Traite des Fonctions Algebriques de Deux
Variables by Picard and Simart. There one may find a fairly
complete extension (completed by Poincare) of equations
(5) and (6) to the rational integrals (8), an extension made
possible by the understanding of the 1-cycles on an alge-
braic surface that was developed by Picard and by the theory
of so-called normal functions due to Poincare. For ex-
ample, (5) becomes the statement that the number of closed,
linearly independent holomorphic 1-forms on the surface
is equal to the irregularity q, the irregularity being an algebro-
geometric character that was later identified by Lefschetz
as b1/2, where bx = rank HX(S,T). In addition, by very lengthy
arguments Picard was able to prove a number of results
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concerning the double integrals (9). One of these may be
explained as follows: We consider the affine algebraic sur-
face So obtained by removing the hyperplane at infinity
from S. Thus, So is the surface in C3 given by the polyno-
mial equation (7). We then consider rational 2-fdrms

CO = R{x,y,z)dxdy

that are everywhere holomorphic on So and, therefore, that
have their poles at infinity. These are then given by such
expressions where R is a polynomial that has certain speci-
fied properties relative to the singularities of So. Among
such co's are the exact differentials

O) = dr], (10)

where t| = Pdx+ Qdy is a rational 1-form on 5 that is holo-
morphic on So. Picard then proved that the pairing

< <*>,/>-> J<CO

r
between equivalence classes of such co's modulo exact forms
(10) and 2-cycles ye H2(S0,Z) modulo torsion cycles was
nondegenerate. This is essentially equivalent to what is
now known as the algebraic deRham theorem for algebraic
surfaces.

As far as Picard and Poincare were able to push things,
certain difficulties remained. One was the relationship of
the "curve at infinity"—i.e., 5\S0—to the topology of S. In
the third paragraph of his "A Page of Mathematical Auto-
biography" (1968, 2), Lefschetz refers to this when he says:

From the p0 formula of Picard, applied to a hyperelliptic surface 4> (topo-
logically the product of 4 circles) I had come to believe that the second
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Betti number /^(O) = 5, whereas clearly R^(9) = 6. What was wrong? After
considerable time it dawned upon me that Picard only dealt -with finite 2-
cycles, the only useful cycles for calculating periods of certain double inte-
grals. Missing link? The cycle at infinity, that is the plane section of the
surface at infinity. This drew my attention to cycles carried by an algebraic
surve, that is to algebraic cycles, and . . . the harpoon was in!

Another difficulty, one that is totally unlike anything en-
countered in the study of rational integrals on curves, is
that we may have a relation (10) where, for any r\ satisfying
that equation, the poles of T| are strictly longer than those
of (0. In modern terminology, co defines a class in /^(SQ)
that is nonzero but whose image vanishes in lfi(S^J)o) for
a suitable sivisor Dg on S.

It was at this stage that Lefschetz entered the picture.
By systematically studying and understanding the topology
of an algebraic surface, and also of a general w-dimen-
sional algebraic variety, Lefschetz was able to solidify and
considerably extend the results of Picard and Poincare. In
so doing, he once and for all established the principle that
the understanding of the topology of an algebraic variety
was central and essential in algebraic geometry. Accord-
ing to Hodge,7 "our greatest debt to Lefschetz lies in the
fact that he showed us that a study of topology was essen-
tial for all algebraic geometers."

Before discussing the work of Lefschetz in more detail, I
would like to remark that it was seeking a better under-
standing of Lefschetz' results on the topology of an alge-
braic variety that led Hodge to his work on harmonic inte-
grals as detailed in his book The Theory and Applications of
Harmonic Integrals (Cambridge, 1988). Subsequently, it is
fair to say that algebraic geometry has been central to
the development of mathematics in the last forty years,
and that the strand of what might be called "transcenden-
tal algebraic geometry" as represented by Lefschetz and
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Hodge is now completely interwoven into algebraic geom-
etry and into the rest of mathematics.

Turning to Lefschetz' work in algebraic geometry, his
approach to the study of the topology of an algebraic vari-
ety was typically direct and intuitive. He treated an alge-
braic variety as a concrete object and analyzed its topology
directly. In modern terms, he realized a smooth n-dimen-
sional V by generally projecting it to a hypersurface V in
pn +1 giv e n Dy the affine equation

f(Xl,...,xn,y) = 0. (11)

Questions of singularities were by and large circumvented
by suitably lifting various constructions on Yup to V. Now
it was Picard who systematically analyzed the algebraic sur-
face (7) by considering it as "fibred" by the °oJ algebraic
curves C given by

f(x,y,z) = 0, y = y.

This, in turn, was an extension of the classical method of
studying the algebraic curve (2) by considering it as a branched
covering over the x- axis. The analogue of branch points
are then the singular curves C where the plane y = y is
tangent to the surface f(x,y,z) = 0. Picard thus considered
5 to be made up of the °°x curves C all but the singular
ones having the picture above with retrosections 5j . . . . , 8 ,
Yj . . . . , 7' . The behavior of this topological picture was
then analyzed. This method was then formalized and ex-
tended by Lefschetz, who proceeded to study the smooth
variety V inductively by closely examining its hyperplane
sections given by (11), together with £ c^= constant.

More specifically, choosing coordinates generically, we
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consider the Lefschetz pencil of ( n - 1)-dimensional vari-
eties Wt given by

*» = *•

The lifts Wt of Wt to V are then smooth except for a fi-
nite number of critical values t = tv . . . , t = tN, where the
hyperplane xn = ta is simply tangent to Wt at one finite
point pa. In a suitable local analytic coordinate system
zx, . . .. , zre+1 in Pra+1 centered around pa, the Lefschetz
pencil has the analytic equation

and from this a complete and explicit analysis of the topol-
ogy of the wt as t—> ta is possible. The result is that locally
Wt retracts onto the real w-sphere 5̂  given by

[Imz,=0=/m (t- ta)

This cycle then shrinks to a point or vanishes as t —» ta. All
this may be pictured in the case n = 1 by

Assume now that, by an inductive procedure, the topo-
logical structure of the Wtis known in a manner to be made
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more explicit below. Next, picture the £-plane with slits
drawn to the critical values

R

Over the simply connected region R on the ^-sphere minus
the slits, the family ]fft, te R is topologically trivial and is
thus a product. More precisely, if we assume that induc-
tively wt, te R, has been represented as a real 2(n- 1) cell
e?n~2, with suitable identifications on the boundary, then
the family et

2n~2, te R, describes a 2ra-cell e2". The bound-
ary of e2" consists of the family of boundaries of the efn~2,
which are assumed to be known inductively, together with
the identifications that result from the identifications across
the slits tQta, as depicted above. These latter identifica-
tions are then known from a local analysis of the singulari-
ties around the points pa.

In the case n = 1, the cells ef are obtained by cutting the
Riemann surface yi[t along the retrosections 8j . . . . , 5 ,
Yj . . . . , Jg- As t —» ta we have a global picture

where the cycle 8j vanishes. An explicit local analysis of
this picture around t= ta gives the identification
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to be made across the slit tQta.
I have given this description not so much to attempt to

reproduce Lefschetz as to illustrate his way of working,
which, as mentioned, was concrete and direct. He had
marvelous intuition, and so far as I know, all of the results
he claimed in algebraic geometry have now been proved.
When I was a graduate student at Princeton, it was fre-
quently said that "Lefschetz never stated a false theorem
nor gave a correct proof." In the case of the method of
Lefschetz' pencils, it was later recognized that he was using
U s a complex Morse function, log \t~ to\ being the real
Morse function, and this then led to the very beautiful
derivation of Lefschetz' theorems, as given by Andreotti-
Frankel (in Global Analysis, Princeton University Press, 1969).

These theorems may be summarized as follows: denote
by W a general smooth hyperplane section Wt of Vand
consider the inclusion mapping

j-.H^WM-tHiiVX). (12)

Then, to begin with, we have:

the mappings (12) are isomorphisms for
i < n - 2 and are surjective for i = n- 1; (13)

for i = n — 1, the kernel of j is generated by
the vanishing cycles 5a associated to the vari- (14)
ous critical points i = ta.

These two results have the effect of reducing the topology
of a variety below the middle dimension to that of its hy-
perplane sections. To understand the crucial middle ho-
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mology group from the exact homology sequence of the
pair (V,W) and assuming an inductive understanding of
Hn(W,7L), we need to understand the relative group Hn(V,
W;Z) and this is given by the statement:

the group Hn(V, W;Z) is generated by the rela-
tive cycles Aa described by the locus of the van- (15)
ishing cycle 8f as t traverses the slit tQta.

In addition to giving the 8a and Aa as generators of suit-
able groups, Lefschetz also gave the generators for the re-
lations among these cycles and thereby arrived at a com-
plete understanding of the Ht{V,Z) for i< n. For i>nwe
consider the mappings

Lk:Hn+k(V,Q)-+Hn_k(V,Q), (16)

obtained by intersecting a cycle with k general hyperplane
sections. Then we have

the mapping (16) is an isomorphism. (17)

This result, the so-called Hard Lefschetz Theorem, has an
interesting history. To see what it means, we consider the
case of algebraic surfaces. Over the punctured ^sphere B
= P^Up • • • , tN], we have a family Ct, t e B, of smooth alge-
braic curves. By transporting cycles Q around closed loops
on B, we obtain the so-called monodrony action of 7ta (J5)
on Hj(C,Z). The effect of moving cycles around a critical
point ta is given by the Picard-Lefschetz transormation

where y • 8a is the intersection number. It follows from
(13) and (14) that HX(S) is isomorphic to
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{yeH1(C):(jda) = 0 for a = l,.. .,N}.

This is just the space of invariant cycles, i.e., classes in
H^C) that are invariant under the action of Tt^B).

Given a 3-cycle T on S that is in general position, the
intersections

give a family of cycles invariant under K^B), and the map
L: H$(S) -> Hj(S) is just r -> yt =ye H^C) followed by
the natural mapping H^C) —> H^S). Conversely, if y is an
invariant cycle, then the locus F of its translates yt is a 3-
cycle with F • C = y. Thus, the mapping L is surjective, and
to prove that it is injective, we must show that

an invariant, vanishing cycle is zero. (18)

It is easy to see that (18) is equivalent to the assertion

the intersection form on the space of vanish- (18)'
ing cycles is nondegenerate,

and that, in turn, is a consequence of

the action of it^B) on Hj(C) is semi-simple. (18)"

Clearly, (18)-(18)" are global statements about monodrony,
and although (18)" is true, the only existing proofs re-
quire the use of Hodge theory or its effective equivalent.
This is a case in which Lefschetz' intuition was right on
target, but the direct, geometric approach was insufficient
to give a complete proof.
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As a consequence of the results (13)-(17), Lefschetz de-
duced the properties

b2i > 1, i < n

on the Betti numbers b{ of a smooth n-dimensional variety.
The first inequality in the case i = 0, n = 2 is a consequence
of (18)', since an alternating bilinear form can be non-
degenerate only on a vector space of even dimensions; the
general case is proved by similar considerations.

The second inequality above arises from the following
considerations. First, any fc-dimensional subvariety U a V
carries a fundamental cycle [U] e //2ft(V,Z). (Typically,
Lefschetz considered this as obvious.) Second, for subvarieties
[7j and U2 of complementary dimensions and meeting in
isolated points, the algebro-geometric and topological in-
tersection numbers are equal, namely

Finally, a general fc-fold hyperplane section U and a gen-
eral (n- k)-fold hyperplane meet in a positive number of
points, and consequently [(?] # 0. The argument just given
is clearly a special case of the Hard Lefschetz Theorem
(16); the point of putting it here is that it explains how
Lefschetz' attention was drawn to the part H^(V,Z) of
the homology of a smooth variety that is represented by
algebraic cycles, i.e., by linear combinations of fundamen-
tal classes of fe-dimensional algebraic subvarieties.

Lefschetz was especially interested in the part H^J V,Z)
given by the fundamental classes of the divisors on V.
Here, his results were definitive. To state them we shall
specialize to the case of algebraic surfaces, although every-
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thing extends to n-dimensions. Two divisors DVD2 on an
algebraic surface are said to be algebraically equivalent in
case there is an algebraic family {DjJ of divisors parameter-
ized by an auxilary variety A and such that T)i = D^.for
suitable points XVX2 on A. It is clear that [DJ = [Z>2] if Dx

and Z>2 are algebraically equivalent, and Lefschetz proved
the converse. This then established once and for all the
so-called theory of the base and the finiteness of the rank
p of the group of divisors modulo algebraic equivalence.

Now, this number p = H^ (S,Z) had been discussed by
Picard in his attempt to classify the double integrals (9).
Lefschetz was now able to give the generalization of (6) to
double integrals by completing Picard's 'algebraic deRham'
result to

the dimension of the space of rational differ-
entials CO = R(x,y)dx dy of the second kind modulo (20)
exact forms is equal to b2 - p.

Put another way, Lefschetz was able to show that the occur-
rence of the relation (10) where poles (T|) > poles (co)was
attributable to the nonhomologous algebraic 1-cycles on 5.

A related result, the famous Lefschetz (1,1) theorem,
characterized the algebraic part H^(S,Z) of //2(S,Z). The
result is:

A necessary and sufficient condition that a
class T e H2(S,Z) be of the form T = [D] for (21)
some divisor D is

J co = 0
r

for all holomorphic two-forms CO on S. The conjectured
extension of (21) to higher dimensions and codimensions
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is due to Hodge, and it remains one of the major unsolved
problems in algebraic geometry.

To conclude this section on Lefschetz and algebraic ge-
ometry, I would like to briefly comment on Lefschetz'
subsequent influence on algebraic geometry. In the first
forty or so years of the twentieth century there were two
principal strands in algebraic geometry; one was the geo-
metric approach of the Italian school, and the other was
the transcendental approach as represented by Lefschetz
and Hodge and continued by Kodaira and Spencer. In the
last half-century a third strand, the algebraic approach of
Weil, Zariski, and Grothendieck was added, and all three
strands have now become intertwined. There is no better
illustration of this than the Weil conjectures. These purely
arithmetical statements were formulated by Weil, who also
understood that they could be proved if a "suitable"
cohomology theory could be developed for varieties de-
fined over a field of finite characteristic. A suitable cohomology
theory is essentially one for which Poincare duality and the
various Lefschetz theorems stated above, in particular the
Hard Lefschetz Theorem, could be established. Such a co-
homology theory was introduced by Grothendieck, and as
is well known, the Weil program was completed by Deligne,
who in effect used an inductive procedure reminiscent of
the Lefschetz pencil method to prove an arithmetic ana-
logue of the Hard Lefschetz Theorem.

When we look at algebraic geometry today, we not only
see the intertwining of the historical strands within the
field, but equally, we see algebraic geometry intertwined
with the rest of mathematics and central to the ongoing
developments of the field. One illustration of this is the
use of algebraic geometry to generate solutions of special
differential equations, both ordinary and partial. Here I
mention the work originating from the Russian school that
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constructs commuting integrals of special Hamiltonian dy-
namical systems from the Jacobian variety of algebraic
curves, and the Atiyah-Hitchin-Drinfeld-Manin construction
of special solutions to the Yang-Mills equations from suit-
able algebraic vector bundles. To some extent itt may be
said that we have come full circle to the histoniicaK roots of
algebraic geometry in the study of special tra«seendiental
functions arising from abelian integrals, abelian sransy and
periods as explained above. In all of these developments,
the topological properties of algebraic varieties, as part of
the infrastructure of algebraic geometry, play a central role.

I would like to mention a very beautiful recent develop-
ment that exemplifies both a style and subject that are
direct descendents of Lefschetz. This is the intersection
homology theory of algebraic varieties due to Goresky-
MacPherson, a theory that was designed to retain Poincare
duality and that reflects the topological properties of
singularities in much the same way as ordinary homology,
in the hands of Lefschetz, reflected the topology of smooth
varieties. On reading the original paper of Goresky-
MacPherson (Inventiones Math., Vol 71, 1983) one cannot help
but be struck by the similarity in viewpoint to Lefschetz.

Lefschetz' influence in algebraic geometry clearly places
him in the tradition of Abel, jacobi, Riemann, Poincare,
and Picard, whose works he drew so much from and ex-
tended in such a significant way. This influence is mani-
fest today in his theorems, some of which were stated above,
in the intertwining of topology and algebraic geometry,
and in his overall approach to mathematics.

LEFSCHETZ THE TOPOLOGIST

Much of Lefschetz' work in topology is concerned with
the notion of "fixed point." If / i s a continuous mapping
of a space X into itself, a fixed point of / i s a point x such
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tha.tf(x) = x. The first important result of fixed-point theory
was proved by L. E. J. Brouwer in 1912. It asserts that, if E
is a closed w-cell, then every mapping of E into itself has
(at least) one fixed point. This result becomes false if E is
replaced by a space with a more complicated topological
structure. For example, if S is the unit sphere in Euclid-
ean (n + l)-space and/ i s the antipodal map, given by the
formula f(x) = -x for all points x of S, then / has no fixed
points. On the other hand, any mapping of S into itself
has a well-defined degree d(f) [intuitively, d(f) is the number
of times that /maps S around itself; a more precise defini-
tion is given in the next paragraph]. It can be proved that
any map whose degree is different from the degree (-1)"+1

of the antipodal map has a fixed point.
If X is a compact polyhedron and q is a non-negative

integer, the q th homology group of X with rational coeffi-
cients is a rational vector space H (X) of finite dimension;
and a map /• X —> X induces a homomorphism f: H (X)
—>// (X), which can be represented by a square matrix with
rational (in fact, with integral) entries. If t is the trace of
this matrix, the Lefschetz number of / is the alternating sum
L(f) of the integers t. The homomorphisms / depend
only on the homotopy class of the map / and therefore the
same is true for the Lefschetz number. In particular, if g-is
a sufficiently close approximation to /, then L(f) = L(g).
When Xis the n-sphere, the only nontrivial homology groups
of X occur in dimensions o and n, and the latter groups
are one-dimensional. Thus, to and tn are integers; in fact,
to=\ and tn = d(f), so that

L($ = i + (-iy d(f).

Thus, the above result on self-maps of the n-sphere is sub-
sumed in the Lefschetz Fixed-Point Theorem: If X is a
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compact polyhedron and f: X —> X a map such that L(f) ^ 0,
then f has a fixed point.

In his first proof of the fixed-point theorem in 1923
(1923, 1), Lefschetz made the additional assumption that
X is an orientable closed re-manifold. One can approxi-
mate the map /by a map g that has only a finite number of
fixed points and that is well-behaved near each fixed point
x in the sense that g maps some neighborhood of x
homeomorphically upon another neighborhood. The in-
dex i(x) is then defined to be +1 or -1 according to whether
g preserves or reverses orientation about x. The Cartesian
square of X is an orientable (2re)-manifold F, and the di-
agonal D and the graph G of g can be regarded as n-cycles
in Y. Their intersection consists of all points (x,x) such
that x is a fixed point of g; it is a zero-cycle y of Y whose
Kronecker index I(y) is easily seen to equal the sum of the
indices of the fixed points of g. But I(y) can be calculated
in a different way, using the Kunneth theorem on the ho-
mology groups of a product space and the Poincare duality
theorem in Y, with the result that I(y) = L(g). I f /has no
fixed points, we may assume that g has none either; then
L(f) = L(g) = I(y) = 0.

While this proof is attractive, it suffers from the disad-
vantage that it fails to include the Brouwer theorem as a
special case. This is because the re-cell is not a closed
manifold, but rather a manifold with a boundary; and the
above proof breaks down because of the failure of Poincare
duality for manifolds with a boundary. It was to remedy
this situation that Lefschetz invented relative homology.

Like many other results of the time, the Lefschetz Dual-
ity Theorem was awkward to state because the correct con-
cepts had not yet been developed. Expressed in modern
language, it asserts that, if X is a (compact, oriented) re-
manifold with regular boundary A, then the relative ho-
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mology group H (X,A) is isomorphic with the cohomology
group Hn~4(X). For the purpose of proving the fixed-point
theorem, it suffices to know that the homology groups H (X,A)
and Hn_ (X) are dual vector spaces. This was sufficient to
modify the proof above to cover the case of manifolds with
regular boundary, and this was done by Lefschetz in 1927
(1927, 2).

The importance of the Lefschetz duality theorem was
not limited to this application. Of course, if A = 0 it
reduces to the Poincare duality theorem. On the other
hand, if A is a subcomplex of a triangulation of the n-
sphere S, and if U is a regular neighborhoood of A, then
S - U is a manifold with regular boundary b(U), to which
we may apply the Lefschetz duality theorem to conclude
that Hq[S - U,b(U)] and Hn~i(S- U) are isomorphic. Using
standard (by now!) techniques of homology theory, we re-
cover the Alexander duality theorem. Thus, the Lefschetz
duality theorem appears as a unifying factor, connecting
two important but apparently unrelated results.

Not content with this version of the fixed-point theo-
rem, Lefschetz continued to seek generalizations. In 1928
Hopf had proved the theorem for arbitrary compacy poly-
hedra, but with some restriction on the map / By 1934
Lefschetz had succeeded in removing the latter restrictions
(1934,2), and by 1937 he was able to remove the hypoth-
esis of triangulability of X, requiring instead that X be a
compactum which is homologically locally connected in a
suitable sense (1937,4).

The extensions of the fixed point theorem to more gen-
eral spaces are not simply generalizations for their own
sake. Indeed, fixed point theorems often appear in analy-
sis as tools for proving existence theorems. To mention a
very simple example, conisder the ordinary first-order boundary
problem
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y' = F(x,y), y(xQ) = y0,

or, equivalently, the integral equation

y(x) = Jo + f" F[x,y(x)]dx.

The correspondence that associates to each function y the
function defined by the right-hand side of the latter equa-
tion may be regarded as a mapping/of a suitable function
space into itself. And a solution of the equation is nothing
but a fixed point of / To be sure, the function spaces
appearing here and in other places in analysis are far from
being compact, and so the Lefschetz theorem does not
apply directly. Nevertheless, this point of view has been a
very powerful one in modern analysis.

The importance of Lefschetz' work, however, is not lim-
ited to the study of fixed-point theorems. The notion of a
fixed point of a map of a space into itself can be thought
of as a special case of that of a coincidence. If / g: X —> Y
are maps, a coincidence of / and g is a point x such that
f(x) = g(x). If Y= X and / is the identify map, a coincidence
of/and g is simply a fixed point of g. The graphs G(f) and
G(g) of / and g are subspaces of X x Y, and the coinci-
dences of / and g correspond to the intersection of their
graphs. If X and Y are manifolds of dimensions m and n,
respectively, then G(f) and G(g) may be regarded as w-cycles
in the (m+ re)-manifold Xx Y. Now the theory of intersec-
tions in algebraic geometry was an old one; if [/and Fare
subvarieties of an algebraic variety W, in general position,
their intersection is a subvariety of dimension p + q — n,
where p, q, and n are the dimensions of U, V, and W,
respectively. This suggested to Lefschetz the idea of defin-
ing intersections in an orientable manifold M. This he
succeeded in doing with the result that the graded
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homology group of M is a ring, the intersection ring of M
(1926,1).

All this took place before the discovery of cohomology.
While Lefschetz did not define cohomology groups, he in-
troduced pseudo-cycles in 1930 (1930,4). They were not de-
fined intrinsically but, rather, were defined in terms of an
embedding of the space in question in a sphere, and were
used only as a tool for the proof of one of the versions of
his fixed-point theorem. It was not until the late 1930s
that the modern treatment of cohomology and cup prod-
ucts was given.

Other of Lefschetz' ideas that by now have thoroughly
permeated the subject include singular homology theory
and relative homology. While Lefschetz was not the first
to use singular chains, his Colloquium Lectures (1930,1)
gave the first formal treatment of the theory. His theory
had some mild defects (the chain groups turned out not to
be free), but these were corrected by Eilenberg in 1944,
and the resulting theory has been of the greatest impor-
tance. As for relative homology groups, they are principal
ingredients in the axiomatic treatment of the homology
theory by Eilenberg and Steenrod, which has been so in-
fluential in the development of the subject in the last thirty
or so years.

LEFSCHETZ AND ORDINARY DIFFERENTIAL EQUATIONS

Lefschetz was nearly sixty years old when he turned to
differential equations, and he devoted the last twenty-five
years of his life to the subject. He wrote over forty papers,
articles, and books in this field and formed around him a
vigorous and distinguished school, guiding and encourag-
ing students and young mathematicians to work on prob-
lems of significance. In fact, he rekindled interest in a
subject that had been nearly totally neglected in the United
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States, and he recognized its mathematical importance and
practical implications.

Although Lefschetz' own contributions to differential
equations, control theory, and dynamical systems are not
comparable to his great work in algebraic geometry and
topology, he nevertheless wrote noteworthy original papers
in these areas. His main interests centered around the
theory of dissipative (as distinct from conservative) dynamical
systems, including structural stability, and the resolution of
singularities of critical points and bifurcating periodic orbits.

Dissipative dynamical systems are important in engineer-
ing problems where friction and resistance are essential
ingredients. Such dynamical systems can be represented
as vector fields on the phase-space manifold. Let 5 be the
set of all C1 vector fields on a compact differentiable mani-
fold M without boundary and assign to S the ^-topology.
Two systems Vl and V2 of S are said to be qualitatively equivalent
if there is a homeomorphism of M mapping the unpara-
meterized solution curves of V̂  onto those of Vr A dy-
namical system V is called structurally stable if there is a
neighborhood N of V in 5 such that each Vx s N is qualita-
tively equivalent to V. Structurally stable differential sys-
tems are important in applied problems where the param-
eters of the physical process are known only approximately.

Lefschetz stimulated and guided work on these qualita-
tive problems of global analysis. H. F. DeBaggis improved
results of Pontryagin for the sphere S2 = M, and M. Peixoto
proved that the structurally stable systems on a compact
surface form an open dense subset of S. L. Markus proved
that, on arbitrary re-dimensional manifolds M, a structur-
ally stable system must necessarily have isolated and el-
ementary critical points and periodic orbits.

Lefschetz was the first person from outside the former
Soviet Union to recognize the importance of Liapunov's



302 BIOGRAPHICAL MEMOIRS

stability theory, and he made an important contribution to
the Lurie stability problem, one of the first applications of
the Liapunov theory to a nonlinear control problem. He
opened up the field of the mathematical theory of control,
and in 1951, one of his students, Donald Bushaw, gave the
first complete solution of a nontrivial problem in optimal
control.

Among his other original contributions was his work on
the behavior of solutions of analytic differential equations
near an isolated singular point. He gave a complete char-
acterization and a constructive procedure for obtaining all
the solution curves of a two-dimensional system near an
isolated critical point that pass through this critical point
(1968,1). For a two-dimensional analytic system for which
the coefficient matrix of the linear variational equation of
an isolated critical point has both roots zero but is not
identically zero, he proved that there can be at most a
single nested oval of orbits (1958,1). He gave one of the
best treatments of the method of determining the stability
of an isolated equilibrium point of an n-dimensional
system for which the linear variational equation has some
zero roots(1961,l). He also studied the existence of peri-
odic solutions of second- and higher-order nonlinear sys-
tems of differential equations (see 1943,2; 1954,2).

NOTES

1. Phillip Griffiths wrote the section on algebraic geometry, Donald
Spencer wrote the sections on personal history and ordinary differential
equations, and George Whitehead wrote the section on topology.

2. The date of the accident has been given incorrectly by several au-
thors. The account of it here is taken from a communication by Lefschetz
to the Academy dated January 8, 1954, and entitled "A Self Portrait," an
unpublished document that was requested by A. Wetmore on behalf of the
Academy.

3. From "A Self Portrait" (see note 2).
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4. Topology can be described as the study of continuous functions, and
it is customary to use the work "map" or "mapping" when referring to such
functions.

5. F. Nebeker and A. W. Tucker, "Lefschetz, Solomon," in Dictionary of
Scientific Biography, Supplement II, 1991.

6. Algebraic Geometry and Topology, a Symposium in Honor of S. Lefschetz,
edited by R. H. Fox, D. C. Spencer, and A. W. Tucker, Princeton University
Press, 1957, pp. 1-49.

7. Ibid, note 6.
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