Online MAGMA
|
|
|
KK<t> := FunctionField(GF(5^3)); |
E := EllipticCurve([t^2, t^3 + t]); |
E; |
&*BadPlaces(E); |
LocalInformation(E); |
MordellWeilGroup(E); |
|
|
KK<t> := FunctionField(GF(5^12)); |
E := EllipticCurve([t^2, t^3 + t]); |
E; |
&*BadPlaces(E); |
LocalInformation(E); |
MordellWeilGroup(E); |
|
Non-constant Non-Isotrivial Rational Elliptic Fibration |
The Mordell-Weil group structure for a 'same' E/Fq(t) depends on q = p^r |
Even for a fixed p = 5, we have |E(Fq(t))| = 1 for q = 5^3 and E(Fq(t)) = Z^4 for q = 5^12 |
|
|
KK<t> := FunctionField(GF(4007)); |
E1 := EllipticCurve([0, t]); |
E2 := EllipticCurve([0, t^2]); |
E3 := EllipticCurve([0, t^3]); |
E4 := EllipticCurve([0, t^4]); |
E5 := EllipticCurve([0, t^5]); |
E6 := EllipticCurve([0, t^6]); |
E7 := EllipticCurve([0, t^7]); |
E1; |
&*BadPlaces(E1); |
LocalInformation(E1); |
E2; |
&*BadPlaces(E2); |
LocalInformation(E2); |
E3; |
&*BadPlaces(E3); |
LocalInformation(E3); |
E4; |
&*BadPlaces(E4); |
LocalInformation(E4); |
E5; |
&*BadPlaces(E5); |
LocalInformation(E5); |
E6; |
&*BadPlaces(E6); |
LocalInformation(E6); |
E7; |
&*BadPlaces(E7); |
LocalInformation(E7); |
|
Non-constant Isotrivial with j = 1728 Rational Elliptic Surface |
|
|
KK<t> := FunctionField(GF(4007)); |
E1 := EllipticCurve([0, t^3*(t-1)*(t-2)^5]); |
E2 := EllipticCurve([0, t^3*(t-1)^2*(t-2)^5]); |
E3 := EllipticCurve([0, t^3*(t-1)^3*(t-2)^5]); |
E1; |
&*BadPlaces(E1); |
LocalInformation(E1); |
E2; |
&*BadPlaces(E2); |
LocalInformation(E2); |
E3; |
&*BadPlaces(E3); |
LocalInformation(E3); |
|
Non-constant Isotrivial with j = 1728 Projective Elliptic K3 Surface |
|
|
KK<t> := FunctionField(GF(4007)); |
E := EllipticCurve([-27, 54 - 2^6*3^6*t^1]); |
E; |
&*BadPlaces(E); |
LocalInformation(E); |
|
Non-constant Non-Isotrivial Ulmer's Curve of Infinite Rank |
|
|