Online MAGMA
 
 
KK<t> := FunctionField(GF(5^3));
E := EllipticCurve([t^2, t^3 + t]);
E;
&*BadPlaces(E);
LocalInformation(E);
MordellWeilGroup(E);
 
 
KK<t> := FunctionField(GF(5^12));
E := EllipticCurve([t^2, t^3 + t]);
E;
&*BadPlaces(E);
LocalInformation(E);
MordellWeilGroup(E);
 
Non-constant Non-Isotrivial Rational Elliptic Fibration
The Mordell-Weil group structure for a 'same' E/Fq(t) depends on q = p^r
Even for a fixed p = 5, we have |E(Fq(t))| = 1 for q = 5^3 and E(Fq(t)) = Z^4 for q = 5^12
 
 
KK<t> := FunctionField(GF(4007));
E1 := EllipticCurve([0, t]);
E2 := EllipticCurve([0, t^2]);
E3 := EllipticCurve([0, t^3]);
E4 := EllipticCurve([0, t^4]);
E5 := EllipticCurve([0, t^5]);
E6 := EllipticCurve([0, t^6]);
E7 := EllipticCurve([0, t^7]);
E1;
&*BadPlaces(E1);
LocalInformation(E1);
E2;
&*BadPlaces(E2);
LocalInformation(E2);
E3;
&*BadPlaces(E3);
LocalInformation(E3);
E4;
&*BadPlaces(E4);
LocalInformation(E4);
E5;
&*BadPlaces(E5);
LocalInformation(E5);
E6;
&*BadPlaces(E6);
LocalInformation(E6);
E7;
&*BadPlaces(E7);
LocalInformation(E7);
 
Non-constant Isotrivial with j = 1728 Rational Elliptic Surface
 
 
KK<t> := FunctionField(GF(4007));
E1 := EllipticCurve([0, t^3*(t-1)*(t-2)^5]);
E2 := EllipticCurve([0, t^3*(t-1)^2*(t-2)^5]);
E3 := EllipticCurve([0, t^3*(t-1)^3*(t-2)^5]);
E1;
&*BadPlaces(E1);
LocalInformation(E1);
E2;
&*BadPlaces(E2);
LocalInformation(E2);
E3;
&*BadPlaces(E3);
LocalInformation(E3);
 
Non-constant Isotrivial with j = 1728 Projective Elliptic K3 Surface
 
 
KK<t> := FunctionField(GF(4007));
E := EllipticCurve([-27, 54 - 2^6*3^6*t^1]);
E;
&*BadPlaces(E);
LocalInformation(E);
 
Non-constant Non-Isotrivial Ulmer's Curve of Infinite Rank