|
Online MAGMA
|
| |
| |
| KK<t> := FunctionField(GF(5^3)); |
| E := EllipticCurve([t^2, t^3 + t]); |
| E; |
| &*BadPlaces(E); |
| LocalInformation(E); |
| MordellWeilGroup(E); |
| |
| |
| KK<t> := FunctionField(GF(5^12)); |
| E := EllipticCurve([t^2, t^3 + t]); |
| E; |
| &*BadPlaces(E); |
| LocalInformation(E); |
| MordellWeilGroup(E); |
| |
| Non-constant Non-Isotrivial Rational Elliptic Fibration |
| The Mordell-Weil group structure for a 'same' E/Fq(t) depends on q = p^r |
| Even for a fixed p = 5, we have |E(Fq(t))| = 1 for q = 5^3 and E(Fq(t)) = Z^4 for q = 5^12 |
| |
| |
| KK<t> := FunctionField(GF(4007)); |
| E1 := EllipticCurve([0, t]); |
| E2 := EllipticCurve([0, t^2]); |
| E3 := EllipticCurve([0, t^3]); |
| E4 := EllipticCurve([0, t^4]); |
| E5 := EllipticCurve([0, t^5]); |
| E6 := EllipticCurve([0, t^6]); |
| E7 := EllipticCurve([0, t^7]); |
| E1; |
| &*BadPlaces(E1); |
| LocalInformation(E1); |
| E2; |
| &*BadPlaces(E2); |
| LocalInformation(E2); |
| E3; |
| &*BadPlaces(E3); |
| LocalInformation(E3); |
| E4; |
| &*BadPlaces(E4); |
| LocalInformation(E4); |
| E5; |
| &*BadPlaces(E5); |
| LocalInformation(E5); |
| E6; |
| &*BadPlaces(E6); |
| LocalInformation(E6); |
| E7; |
| &*BadPlaces(E7); |
| LocalInformation(E7); |
| |
| Non-constant Isotrivial with j = 1728 Rational Elliptic Surface |
| |
| |
| KK<t> := FunctionField(GF(4007)); |
| E1 := EllipticCurve([0, t^3*(t-1)*(t-2)^5]); |
| E2 := EllipticCurve([0, t^3*(t-1)^2*(t-2)^5]); |
| E3 := EllipticCurve([0, t^3*(t-1)^3*(t-2)^5]); |
| E1; |
| &*BadPlaces(E1); |
| LocalInformation(E1); |
| E2; |
| &*BadPlaces(E2); |
| LocalInformation(E2); |
| E3; |
| &*BadPlaces(E3); |
| LocalInformation(E3); |
| |
| Non-constant Isotrivial with j = 1728 Projective Elliptic K3 Surface |
| |
| |
| KK<t> := FunctionField(GF(4007)); |
| E := EllipticCurve([-27, 54 - 2^6*3^6*t^1]); |
| E; |
| &*BadPlaces(E); |
| LocalInformation(E); |
| |
| Non-constant Non-Isotrivial Ulmer's Curve of Infinite Rank |
| |
| |