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Rational points on projective varieties over (Q
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Figure 1: Rational points on the unit circle x> + y? = 1 over Q



. Geometry is enlightening and quadratic formula is awesome

(x.y) (t2—1 2t )€Q2

241241
we parametrized all rational points on the unit circle over Q
. Integral points on the projective conic
C:=V(X?*+Y2- 2% cPp?
are precisely the Pythagorean triples:
[X:Y:Z]=[a®—b2:2ab: 2%+ b*] € 73

. Height measures arithmetic complexity: for gcd(a, b) =1,

ht(%) — max(|al, |])

ht(4/10) =5 and

ht(1000000001/1000000000) = 1000000001 # 1

. On projective varieties, the integral and the rational points
coincide (viewing [a : b] with gcd(a, b) = 1)

X(Q) = X(2)



. Parametrization needs a starting rational point. For instance,
the conic x? + y2 = 3 has no rational point: X(Q) = (.
Showing this is genuinely arithmetic - Fermat's method of
infinite descent or by Hasse—Minkowski for conics it suffices to
find one place v with X(Q,) = 0; here X(Qs3) = 0.

. Higher degree curves are “Fermat’s Last Theorem”. For
x* 4+ y* =1 (a genus-3 curve), one has by Wiles-Taylor

X(Q) = {(:I:]-? 0)7 (07 il)}

More generally, by the Mordell-Faltings theorem, if X/Q is a
smooth projective curve of genus > 2, then X(Q) is finite.

. For an elliptic curve over Q in Weierstrass form

E: y?>=x3+ Ax + B,
there is still no general algorithm that, given A, B € Q, always
determines the full set E(Q) explicitly.

. But we do have a canonical rational point: the point at infinity

co=[0:1:0] € E(Q), E=V(Y?Z-X*-AXZ>-BZ?) c P?



Degree of countable infinity, the rank

(1) (Mordell-Weil) For an elliptic curve E/Q, the group of
rational points is finitely generated:

E(Q) = Zr ¥ E(Q)torS7
where r > 0 is the Mordell-Weil rank and E(Q)oys is finite.

(2) Fundamental questions about r:
» An algorithm that is guaranteed to correctly compute r?

» Which values of r can occur? How often do they occur?

» Is there an upper limit? Can r be arbitrarily large?

(3) Records: the current best explicit examples with largest rank
is Elkies—Klagsbrun (announced 2024) produced an E/Q with
rank at least 29 (the previous unconditional record was > 28
from Elkies, 2006).



Rank 29 X i

C M 25 https://web.math.pmf.unizg.hr/~duje/tors/z1.html|

Trivial torsion group, rank = 29

Elkies - Klagsbrun (2024)

y2 + xy = x3 - 27006183241630922218434652145297453784768054621836357954737385x
+ 55258058551342376475736699591118191821521067032535079608372404779149413277716173425636721497

Independent points of infinite order:

Py = [2891195474228537189458255536634, 1159930748096124706459835910727318679593425283]
= [3402542165322127811451484642234, 1661508223164691055862657623730465560755290883]
P3 = [4298760026558467240422107564794, 4313142249890236204790986787384907722927474563]
P, = [3728756667770947009884455714554, 2530180219584734091116528693531660545660397443]
Ps = [5991744132052078230511185130234, 10418901628842034362301273055728300669218858883]
= [3236493534632768520540227223034, 1324626796262167243658687198416201825373745283]

P; = [78226686134991174: 34, 69039421006 965412551677999951 4883]

= [11492605643548859374635605140234, 35536316911450952155461624238308456029618940883]
Py = [-5143303362384229804906088118566, 7622356511107986864120352355674305680222368483]
P1p = [443985655575065435281568435002, 65844681 3557.

1
[-979565018904269680752629749766, 8987348422104537684966706438714038633832170883]
[5184894285212178249566461261834, 7390536788003150201273204464695859875505480483]
[-4469171023687146502067179612166, 9310658892841458934133221137392081403414455683]
[3606405835110925482450522970234, 211 170363248266 1278988831
P15 = [16151744576785317732688993162234, 61908882092472338946519909276455831463747210883]
[3573684355943766387962362869754, 2094467155115749424853047283659077805560259203]
[-759376049938858166436491644166, 8679171135458197195914024161800061810952119683]

Pig = [-5328058719935886182106003119366, 6920588147379497633202935557367499676224350083]

[5380268474895377355583039694554, 8105660240030025092450118297303424395856037443]

(1706923348’ 203248484, 6758367 95299213867443505411893525786510633]
[5215432542403430758248050783794, 75B1515746204716855921710955354078294243814643]
[2838942178046024039763692432122, 1212346 700

Py3 = [243146882395382015946366404808154/81, 81162527216072633219928813618742 108107/729]

Py = [2558229016839511149831260080762, 1706598395830079994387505244133382709649637123]

Pys. [2361253942905600810977556672634, 21575033962435524487988510893107087632987660831

Pys = [2678312077644931683114439906234, 1462722361020796436741527433473386115047618883]
Pa7 [3379397084927230910084852603902, 16084941673595 49 551
P,g = [3632407730870998917912491355514, 2255654937037700801978158381185619053396712963]
Pyg = [2428778263277521959543043930234, 1998325023610603606161737305486867803334410883]

Previous record with rank > 28




Fix a height ht(E) e.g. naive height for a minimal Weierstrass
model E : y? = x> 4+ Ax + B with no p*|A and p®|B:

ht(E) = max{ 4|A]3, 27|B|*}
E(< X) ={E/Q up to Q-isomorphism : ht(E) < X }

Conjecture (Goldfeld; Katz—Sarnak (rank distribution))
As X — oo,

HE/Qeé(=X):r=0}| , HE/Qe&(=X):r=1}
€(< X)) 2 £(< X)) 2

and
HE/Qe (= X):r=2)]

(= X)) o

To talk about average, we first need N (Q, X) = |E(< X)]



The Shafarevich conjecture for algebraic curves

Q: How many algebraic curves over a global field are there?

A: Infinitely many, so fix invariants and bound the “bad places”.

Q: Let K be a number field with ring of integers Ok, and let S
be a finite set of primes of Ox. How many K-isomorphism
classes of smooth projective curves X /K of genus g have
good reduction at all primes p ¢ S7

A: |. R. Shafarevich (ICM 1962): this set should be finite.

v .
34 I. R. SAFAREVIC

There exists only a finite number of fields of algebraic functions K/k of a
given genus g # 1, the critical prime divisors of which belong to a given finite
set S.

This result also holds, with suitable modifications, for fields of genus

g = 1. For this we must, in addition to the genus, consider another invariant



Finiteness / Effectivity / Exact Counts

» Shafarevich conjecture: for each triple (K, g,S), there are
only finitely many isomorphism classes of smooth projective
curves C/K of genus g with good reduction outside S.

» Parshin: Shafarevich finiteness = Mordell finiteness (via
Parshin’s covering construction). Faltings (1983):
Shafarevich finiteness for abelian varieties over number fields
=- Mordell's conjecture for curves over number fields.

» However, these results are ineffective they prove finiteness but
they do not give an explicit list, or even a good upper bound.

Question
Can we go beyond finiteness and obtain exact counting formulas?

Answer
Yes, for g = 1 over K = [Fy(t) via height moduli and its inertia.



Elliptic surfaces /k = Families of elliptic curves /K

The study of fibrations of curves lies at the heart of the
Enriques-Kodaira classification of algebraic surfaces.

]
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Definition. An elliptic surface is a proper flat morphism
f:X—C

from a smooth projective surface X to a smooth projective curve C
such that the geometric generic fiber is a smooth curve of genus 1.

In this talk we focus on the standard arithmetic setup:
C =P, and f admits a section O : P! — X

(the zero section), which meets the smooth locus of f.



Geography (K%, x(Ox)) = (0, n)

Let f : X — P! be a relatively minimal elliptic surface with a
section, and set n := x(Ox) (so deg A = 12n).

1. n=1 (rational elliptic surface). Then X is rational and
k(X) = —oo. Generically, A has 12 simple zeros, i.e. 12 nodal
fibres (type I1). One construction: take a pencil of plane
cubics in P2 and blow up its 9 base points.

2. n =2 (elliptic K3 surface). Then X is a projective K3
surface with an elliptic fibration, hence x(X) = 0. Generically,
A has 24 simple zeros, i.e. 24 nodal fibres; moduli dim = 18.

3. n >3 (minimal properly elliptic surface). Then x(X) = 1.
Generically, A has 12n simple zeros, i.e. 12n nodal fibres.



Birkar’s o(t) in the elliptic surface case (A = S)

Let f: X — P! be a height—n elliptic surface with section S. To
compare with Birkar's setup for stable Ic minimal models, take

B=0, A=S, Z=P, k(Kx)=1 (n>3).
Birkar's associated polynomial is
o(t) = (Kx + B+ tA)? = (Kx + tS)? = K + 2(Kx-S) t + S?t2.
For a relatively minimal elliptic surface of Kodaira dimension 1,
Kz =0, S%2 = _p, Kx-S=n—2,

hence




Deligne—Mumford stack ﬂm of stable elliptic curves

The stack M 1 is a smooth proper Deligne~Mumford stack
parametrizing stable elliptic curves (genus 1 stable curves with a
section). Its coarse moduli space, the j-line, is My, = Pl

Assume char(K) # 2,3. Then there is an isomorphism

(Mia)k = [(SpecK[as, a6] \ {(0,0)})/Gm ] =t Pk(4,6),

where G, acts by \ - (as,a5) = (A*as, A\ag), corresponding to the
short Weierstrass form

Y2 = X3 + asX + as.

The special stabilizers occur at the orbifold points
[1:0] and [0: 1], with stabilizers 114 and ps,

while a general point has stabilizer p» (coming from the
hyperelliptic involution on an elliptic curve).



Fix a field k. A family of stable elliptic curves with a section
over IP’i is equivalent to a morphism ¢ : P! — Mai.

X —2=Y =¢*(11) ——E11
[ R
Pl—— P — % My,

Here p : 3171 — ﬂl,l is the universal stable elliptic curve,

g : Y — Pl is the pulled-back stable family, and v : X — Y is the
relatively-minimal resolution (A singularity to I,y fiber).

Define the height = degree of ¢ to be n = deg (90*0W1 1(1))
then the moduli stack of stable elliptic fibrations over the P! with
Deg(A) = 12n and a section is Hom, (P!, My 1).

Equivalently, writing Mm ~ P(4,6), a morphism ¢ is given by
o = (as(u,v), ae(u, v)), deg(as) = 4n, deg(ap) = 6n,

with Res(as, ag) # 0 (so a4, a do not vanish simultaneously).



Projective elliptic K3 surface of height n =2

y?2 =x34 ag(u: v)x + ag(u: v)
Weierstrass data for elliptic fibration on algebraic K3 surface,
ag(u:v) = —3utv4,
ag(u:v) = uPv3(u? + v2?).
Then we have A = 4a} + 2722 and j = 1728 - 4a3 /A
{A = 27u1%10u — v)?(u + v)?,
. o 4 2.2

The j-map j : P! — Wl,l =~ Pl is always a morphism but lost the
valuation data crucial for Tate's algorithm to find out what are
(additive) singular fibers at [0 : 1] for t =0 and [1: 0] for t = oo.



Isotrivial rational elliptic surface of height n =1

n= dtd oy,
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Vanishing v < Reduction type © < Twisting [

Theorem (Bejleri—-Park—Satriano; April 2024)

If char(K) # 2,3. Then the twisting condition (r,a) and the order
of vanishing of j at j = oo determine the Kodaira fiber type, and
(r,a) is in turn determined by m = min{3v(as),2v(as)}.

v : (v(as), v(a6)) | Reduction type withj € My1 | T :(r,a)
(>1,1) IT with j = 0 (6,1)
(1,>2) IIT with j = 1728 (4,1)
(>2,2) IV with j = 0 (3,1)

(2,3) T} with j = 0o (2,1)

Iy with j #0,1728

(>3,3) I with j =0 (2,1)
(2,>4) I with j = 1728 (2,1)
(>3,4) IV* with j =0 (3,2)
(3,>5) 11" with j = 1728 (4,3)
(> 4,5) IT* with j =0 (6,5)




X ‘Weierstrass , contraction resolution

=

X
‘ c———— My,
C

9}

» oy C --» Ma1: the minimal weighted linear series (rational j—map)

(24, 36) € HY(C,O(4n) & O(6n)) with v« = (vx(as), vx(a6)), minimal in
the sense that there is no point x € C with vy(as) > 4 and vy(as) > 6.
@: C — M1 is the associated representable twisted morphism with
twisting data ' = (r, a), obtained by taking root stacks at the
indeterminacy points of ¢ (via Bejleri-Park—Satriano correspondence). It
induces a unique stable family over the stacky curve h: ) — C and, by
passing to coarse moduli spaces, a twisted surface model g: Y — C.

f: X — Cis a resolution of singularities of Y. Contract the relative
(—=1)—curves in f: X = C to obtain the relatively-minimal elliptic surface
f': X' — C (with the prescribed Kodaira fibres). Its relative
log-canonical model is the Weierstrass model f: X — C.



Proper polarized cyclotomic stacks

> A separated algebraic stack X of finite type over k is
cyclotomic if every geometric stabilizer is cyclic:

Aut(X) >~ p, (r>1)
» L is uniformizing if each stabilizer acts faithfully on L]z, i.e.
Aut(x) — Gp

Equivalently, the classifying map X — BGy, is representable.

» Let m: X — X be the coarse moduli space. For a uniformizing
L, there exists M > 1 and a line bundle L on X such that

LEM o px|

» L is polarizing if one can choose M so that L is ample on X.
Then (X, L) is a polarized cyclotomic stack.

» Example: For a locally closed substack X C P(w), the
pullback Op(w)(1)|x is polarizing.



> M1 = P(4,6) over Z ] then Hodge bundle is A ~ Op(4,6)(1)

A2 > c*Op(1), (12 =1cm(4,6))

» Elliptic curves with level structure Genus 0 modular curves:
Mi4[M1(2)] =2 P(2,4), M11[[1(3)] = P(1,3), M11[l1(4)] = P(1,2),

and for m € {5,6,7,8,9,10,12} one has My ;[[1(m)] = P* (over
Spec(Z[1/m])); also M1 1[[(2)] = P(2,2)

» Genus 1 with marked points (Smyth stability). Examples include
M172(1) 273(273’4)’ M173(2) %P(1,2,2,3),
Mi14(3) =2 P(1,1,1,2,2), Mys(4) =P

» Hyperelliptic genus g > 2. The stack of monic odd-degree
hyperelliptic curves is

Hog[2g—1] = P(4,6,8,...,4g+2)

(in char(K) =0, and in char(K) > 2g+1)



Height moduli stacks on cyclotomic stacks

Fix a smooth projective curve C/k with function field K = k(C), a
proper polarized cyclotomic stack (X', £) over a perfect field k.

Theorem (Bejleri-Park—Satriano; April 2024)

For each n € Z>q there is a separated Deligne-Mumford stack
M, c(X, L) of finite type over k (with quasi-projective coarse
moduli space) equipped with a canonical bijection

Mo c(X,L)(k) = {PeX(K) : hte(P)=n}.

In particular, finite type is a geometric incarnation of the Northcott
property for the stacky height.



1. There is a finite locally closed stratification
| | #0c(X,£)/Sr = Mpc(X, L)
rd

where HE, ¢ are moduli spaces of twisted maps and the union
runs over all possible admissible local conditions

M= ({f1> al}, RN {rs, as})

and degrees d for a twisted map to (X, £) satisfying

S
a:
n:d—i-Z?f
i=1 '

and Sr is a subgroup of the symmetric group on s letters that
permutes the stacky points of the twisted map.

2. Under the bijection in part (1), each k-point of
H, (X, L)/Sr corresponds to a K-point P with the stable
heiéht and local contributions given by

htst(P) = d {5,- = "”'}

ri ) i=1



Theorem (Bejleri—-Park—Satriano; April 2024)

-

Let f: C --» P(\) be a rational map of smooth projective curve
C, and let P € Pc(A\)(K) denote the corresponding rational point
over K = k(C). Let {x;} be the indeterminacy points of f.

1. Let (L,so,...,sy) be any X-Weighted linear series inducing f .
Then the universal tuning stack (C,m, P) of P is the root
stack of C obtained by taking the rj-th root at x;, where
rj = rmin(Xj; L, S0, - .., sn). Moreover, the induced morphism

aj

on stabilizers over x; is given by the character Xj_ where

aj = amin(Xj7 L7507 s 7SN)'

2. Awls (L,so,...,sn) is minimal if for each indeterminacy
point x € C, there exists an j such that vx(s;) < \;. There
exists a unique minimal \-weighted linear series inducing f.

3. The stacky height hto(1)(P) is equal to deg L where
(L, s0,---,5n) is the unique minimal linear series. Moreover,
the stable height is given by htg(l)(P) = deg P*O(l) and the
local contribution at x; is given by 0,.(P) = %’[k(xj) L K].



Specializing to the canonical case M;; ~ P(4,6)

1. Rational points = Minimal weighted linear series. For
K = k(C), an elliptic curve E/K is a K—point of My 1, i.e. a
minimal Weierstrass data (a4, as) € H(C, O(4n) & O(6n))
with no x € C: vx(as) > 4 and vy(ag) > 6.

2. Minimal weighted linear series = Twisted morphisms.
Vanishing orders at a point p € C,

Yo = (vp(as), vp(a6)),
determine twisting data [, = (rp, ap) and hence the C — C.

3. MMP dictionary (the bridge to Birkar). Fixing vanishing
profile v (resp. twisting profile I') gives strata ch (resp.
H;ﬁc), which parameterize canonical/stable models of the
associated elliptic surfaces with a specified singular fibers.

Equivalently: this is the surface MMP for the pair (X, cS)
(wall-crossing in ¢) packaged in moduli.



8 Different Types of Additive Bad Reductions

Let x :=lem{)o,..., Ay} and ); := K/, as usual.
Lemma (Dori Bejleri-JP—Matthew Satriano; April 2024)
Suppose k > 1. Then the map

me <gcd(:q, k)’ gcd(nr;, @)

induces a bijection from the set {1,... k — 1} to the set
{(r,a):1<a<r, r|lk, ged(r,a) =1}

For My 1 = P(4,6) we have k = 12 which means we have

me {2,3,4,6,8,9,10} ({1,5,7,11} are excluded as prime) that
corresponds to following rooting data m =2 — £, m=3 — %,
m=4—3im=6—3m=83 m=9—32 m=10~ 2
which correspond to 7 + 1 types of additive reductions.
(+1 since ramification at j = oo for I} )



Suppose that normalized base multiplicity m = 3. This occurs if
and only if (v(as),v(ae)) = (1,> 2). Then r =12/ gcd(3,12) = 4
and a = 3/gcd(3,12) = 1. Thus the stabilizer of the twisted curve
acts on the central fiber of the twisted model via the character

e — g, G4 > C4_1. In particular, the central fiber E of ) has

J =1728. The p4 action on E has two fixed points, and there is an
orbit of size two with stabilizer pp C 4. Let Eg be the image of E
in the twisted model Y. As E appears with multiplicity 4, Y has

1(—1,—1) quotient singularities at the images of the the fixed

points and a %(—1, —1) singularity at the image of the orbit of size
two. Each of these singularities is resolved by a single blowup to
obtain X with central fiber 4y + E; 4+ E» + E3 where E; are the
exceptional divisors of the resolution for i = 1,2, 3 and

E? = E3 = —4 with E2 = —2. Then Ey is a (—1)-curve so it needs
to be contracted. After this contraction E, becomes a (—1) curve
and must also be contracted. Since E; for i = 1,2,3 are incident
and pairwise transverse after blowing down Ep, then the images of
E; and E; must be tangent after blowing down E3. Moreover, they
are now (—2)-curves and the relatively minimal model for type III.



Geometric Meaning of Height Moduli Framework

1. So one can run the resolution / minimal model. As these are
algebraic surfaces it can be done over char(K) = p > 0

2. A twisted morphism ¢ : C — ﬂLl with its twisting data
from the universal tuning stack C induces a stable stack-like
model h: ) — C as a unique pullback of the universal family
p: & — Maii. All the ensuing birational geometry is natural.

3. True purpose of a representable classifying morphism is in
the universal principle that ¢ intrinsically contains all the
algebro-geometric data necessary to uniquely determine a
fibration with singular fibers. This is the very essence of the
inner arithmetic of rational points on moduli stacks over K.




1. Consider the fact that ﬂl,l could have been any other
algebraic stack X' (such as M, or A,) which is the
representing object for certain moduli functor as the fine
moduli stack together with the universal family p: &€ — X

2. Representable classifying morphisms as twisted morphisms
¢ : C — X uniquely determines certain families of varieties (of
algebraic curves or abelian varieties) with non-abelian
stabilizers (g > 2). And they naturally have corresponding
“Tate's algorithm”, counting statements and so on.

3. Geometrizing X(K) leads to Height moduli space M, (X, V).
Once we have a space, we compute its invariants, consider
all invariants simultaneously via generating series and show
the motivic height zeta function’s rationality, naturally
having various kinds of consequences.



Arithmetic of algebraic stacks over finite fields

» The weighted point count of a finite-type alg. stack X'/Fq is
1
#e(X) == Y
Aut(x
[X]GX(Fq)/%’ Gl
> We also want the actual count of isomorphism classes
[X(Fq)/ = |
which is immune to the Grothendieck-Lefschetz trace formula.

The inertia stack ZX parametrizes pairs (x, Aut(x))

Theorem (Changho Han-Park)

Let X'/F, be an algebraic stack of finite type with quasi-separated
finite type diagonal. Then

#q(ZX) = |X(Fq)/ = |.



Ekedahl in 2009 introduced the Grothendieck ring Ko(Stcky)

Definition (Ekedahl)

Fix a field k. The Grothendieck ring Ko(Stcky) is the abelian
group generated by isomorphism classes {X'} of finite-type
algebraic stacks over k with affine stabilizers, modulo:

» Scissor relation: if Z C X is closed, then
{xr={2y+{x\ 2}

» Vector bundle relation: if £ — X is a rank n vector bundle,
then
{€} ={X x A"}

Multiplication is induced by products: {X'} - {V} = {X x V}.

Let L := {Al} (the Lefschetz motive). Then

Py =1+4+L+. .- +L", {Gp} =L -1.



Universal for additive & multiplicative invariants

For any ring R and any function 7 : Stcky — R satisfying relations
1) 9(X) = 9(Y) whenever X = Y,

2) 9(X) =o(U) + (X \U) for U < X an open immersion,

2) p(X x V) =v(X)-0(Y),

there is a unique ring homomorphism v : Kp(Stcky) — R
Stckk

K()(Stckk) R

14

Such homomorphism v are called motivic measures.

.. When k =g, the point counting measure {X'} — #4(X) is a
well-defined ring homomorphism #, : Ko(Stckr,) — Q giving the
weighted point count #4(X’) of X over Fy.

.. When k = C, x. and the Hodge—Deligne polynomial E(—; u, v).



How many elliptic curves over k = [, upto isom?

The inertia stack ZM 1 parametrizes [E] and automorphism
groups ([E], Aut[E]). To keep track of the primitive roots of unity

1 if x divides g — 1,

contained in Fg, define function §(x) = ;
0 otherwise.

{M11} =L
For the inertia stack ZM ; for char(k) # 2,3 is equal to

{ZM11} =2L+6(6)-4+6(4) 2
which translates to the following for k = Fq with char(Fg) # 2,3

{IM11} =2L+6, ifg=1 mod 12,
=2L+2, ifg=5 mod 12,
=2L+4, ifg=7 mod 12,
=2L, ifg=11 mod 12.



Sharp enumerations over rational function field

Define height of discriminant A over Fy(t) as ht(A) = gée&4
Elliptic case: Deg(A) = 12n = ht(A) = q*?" for n € Z>

N(Fq(t),B) = H E/Fq4(t) up to Fg(t)-isomorphism:0 < ht(A) < B }‘

Theorem (Bejleri—-Park—Satriano; April 2024)
1 if x divides g — 1,

) , then
0 otherwise.

Let char(Fq) > 3 and 6(x) = {

q8_q7

5 3 _
+5(6).4(:5_;) /31/2+5(4)-2<"3 1 > Bl/3

g —q?
+6(6) - 4+6(4) -2

=1\ Lss6 1/6
N(Fq(t), B) =2 B%/6 _ 2B




Origins of the terms in N (F,(t), B)

91
> 2( Cé 7) B5/®: non-constant po—twist families that are either
q° —dq
non-isotrivial, or isotrivial with j # oo.
» —2BY°: non-constant po—twist families of generically singular
isotrivial elliptic curves with j = oo.

-1
(.75 4) BY/2: non-constant jg—twist families of isotrivial
95—

> 3(6) - 4(
elliptic curves with j = 0.

3
g°—1
> 5(4) - 2(q3 —
elliptic curves with j = 1728.

) B'/3: non-constant p4—twist families of isotrivial

» §(6) - 4: constant elliptic curves with j = 0.

> §(4) - 2: constant elliptic curves with j = 1728.



Geometric Tate’s algorithm




Sieving by minimality on ambient projective stacks

> A weighted linear series may fail to be minimal (so it does not
represent a height-n rational point). The minimality defect e
measures how far it is from being minimal.

> Quotient—-remainder of the base profile. Let u = (u;) be the
normalized base profile and fix x (the minimality threshold). Write
uniquely
Wi = Kqi + ri Gi € Z>0, 0< 1 <k
Define

A= (@) r)i=(n). el = Y a

> Sieve viewpoint. We start from the ambient parameter space of all
weighted linear series (including non-minimal ones), and sieve out
the bad locus by stratifying according to the defect e:

ambient = |_|(defect e), minimal locus = (defect 0).
e>0

Motivic analogue of inclusion—exclusion: we control the complement
of the minimal locus by understanding the defect strata.



Algebraization via motives & Run Euler product

Corollary (Bejleri—-Park—Satriano; April 2024)

After finite constructible stratification of source and target, the map

n N
Yot [ | Wi x B(VE) = P (EB V3f>

e=0 i=0

is an isomorphism on each stratum (hence induces equality of motives).

» Moral. For additive invariants, we can replace a space by any other
space with the same motivic class:

{X} ={Y}in Ko(Stcky) = v(X)=v(Y) for every motivic measure

» How this is used. To compute an arithmetic invariant of X,
stratify into locally closed pieces X = | |, X; and add:

{X}=> (X}
If X is hard, replace it by a stratified-isomorphic Y whose pieces are
computable, and use {X} = {Y}.



Motivic Height Zeta Function as Generating Series

Definition
The motivic height zeta function of P(Xo, ..., An) is the formal
power series

Zy(t) =Y _{Wrin} " € Ko(Stek)[¢]

n>0

where WM is the space of minimal weighted linear series on P! of
height n. We also define the variant

TZ;(t) =Y _{IWP} " € Ko(Steky)[t]

n>0



. We denote the usual motivic zeta function of P! by

Z(t) =) {Sym°P'}t* = (1—]Ltl)(1—t)

. We stratify by minimality defect e to obtain an equality

N n
{r(@w) |- ovnsme
i=0 e=0

which implies

N
Z{P <@ Vﬁ')}t":Zx(f)'Z(t) (1)
i=0

n>0

. Homogeneous polynomials live in compact ambient stack!

Z {7) (é Vrf‘l) } " — {]P)N} + LN+1{P‘X|*N72}1_
i=0

s (1-1t)(1 - LA




Rationality of Motivic Height Zeta Function

Fix weights X = (Ao,...,Ay) and let |X|: = Z,{V:O Ai. Suppose for
simplicity that k contains all lem = lem( Ao, . . ., Ay) roots of unity.

Theorem (Bejleri—-Park—Satriano; April 2024)

For k, X as above and C = Pk, consider W,Ti" and its inertia stack
IWmin_ We have the following formulas over Ko(Stcky).

miny,n _ 1 —Lt N N+1 | X|—N—2
DO = i (B LR

- 1-1Lt -

Z{IW,T'"}f" _ Z ~ ({]P)Ng} +LNg+1{P\)\g\7Ng72}t)
n>0 geimom(k) L~ LIt

where g runs over the lem roots of unity and Xg is a subset of X of size

Ny + 1 depending explicitly on the order of g.



Theorem (Bejleri—-Park—Satriano; April 2024)
{wis(P() } = (PN - L) + LNFL{PIA-N-2)
{ rr’n>1r21(zp(5\'))} (n 2)|)\|+N+2(L\)\| 1 _ ){[P‘X|*1}
Take |X| = 10 and N =1 as My = P(4,6) over Z[1/6].
1. When n =1, X is a Rational elliptic surface.
{wmin } =14 L0414 8+L7HLO+LS+LA4+L3—L

2. When n =2, X is algebraic K3 surface with elliptic fibration
(i.e., Projective elliptic K3 surface with moduli dim. 18).

{Wénin}:L21%20%19%18%17%16+L15+L14+L137]]‘117]L1o7L97L87L77L67H457L47L3

—L(L2— 1)(L18+L17+2]L16+2]L15+3]L14+3]L13+4]L12+4]L11 51101419 + 4184317 4316 4215 214 413412 )



Motives of moduli stacks of elliptic surfaces

Theorem (Bejleri—-Park—Satriano)

Let char(k) # 2,3. The motives (modulo {PGL2}) of moduli
stacks W_©. of minimal Weierstrass fibrations with a single

mm n

Kodaira fiber © and at worst multiplicative reduction elsewhere is

Reduction type © with j € My1 | |y | {W min, O 1 € Ko(Stckg)
k>0 With j = 00 0 [10n—2
IT with j =0 2 103
IIT with j = 1728 3 L1034
IV with j =0 4 1105
IZ>O Wlth_j — 00 5 LlOn—G _ LlOn—7
I with j # 0,1728
1§ with j = 0,1728 6 L10n=7
IV* with j =0 7 108
IIT* with j = 1728 8 L10n—9
IT* with j =0 9 [ 10n—10




Motivic Analytic Number Theory Praxis
Moduli of minimal stable E/F(t) is £12, = Hom,(P!, M 1)

Theorem (Changho Han—Park)
Grothendieck class in Kp(Stcky) with char(k) # 2,3,

{£12n} — L10n+1 _ LlOnfl
Weighted point count over F with char(Fq) # 2,3,

#q(['12n) _ q10n+1 _ q10n—1

FQ) 75 2’ 31

Exact number of Fg—isomorphism classes with char(

[L120(Fq)/ ~ | = #4q(ZL120) = 2+ (q"°"F1 = g1

logg B
12
5
Zrt)(B) = > |L1120(Fg)/ ~|=2" (qlo ‘71)) : (Bs — 1)

n=1



Theorem (Park; July 2025)
For g = 3", there are 4/6 twists at supersingular j =0
> ris odd :

B =1\ os5/6  opis
N(Eo(t). B)=2( =7 ) B° 2B

7_1 3_1
+2<16>B”3—2<€‘3>BV3
9 —q 7 —q

> ris even
q° -1 5/6 1/6
N (Fq(t), B) =2 g B>/° — 2B
7 3
q—l) 2/3 (q—l) 1/3
+4 B</® — 4 B
<J—¢ q*—¢3



Theorem (Park; July 2025)
For g = 2", there are 3/7 twists at supersingular j =0
> ris odd :

N(Fq(t), B) = ( qg > B5/6 281/6

q®—q’
-1 571
(G ()
-4q q°-q°
—2q+4

> ris even :

N(Fq(t), B) =2 ( ¢ - > B5/6 _ opl/6

q® — q°
+5< 3 )B3/4_5<> Bl/2
q® —q’ q% — q°




Happy New Year!

Thank you!



Accessing Cruder Level of Topology via Motives

A priori, point counts over [F; shouldn’t know any topology.

In Ai, cusp singular fiber II and affine line A! have the same point
counts (motives) i.e. {Il = V(y? =x3)} =L = {A! = V(x)} but
they have very different topology.

Same motive since we have a stratification of II = X7 U X5 where
X1 =11 — {pt} and Xo = {pt} and Al = Y7 U Y, where
Y1 = Al — {pt} and Y> = {pt}.

Indeed, X; = Y7 (smooth complement) and X> = Y, (a singular
point is just like a smooth point as Spec(k)) i.e. they are
cut-and-paste equivalent and naturally {II} = {Al} = L

Same for nodal cubic {I; = V(y2 =x3+ Xz)} =L



Different topology since, II and I; have arithmetic genus 1 (they
are singular elliptic curves) whereas A! has arithmetic genus 0

Singular point on II is the tip of a cone over the trefoil knot
whereas singular point on I is the tip of a cone over the Hopf link.
(Every isolated singularity of a complex curve in a complex surface
can be described topologically as the tip of a cone on a link)

8.7. Trefoil knot, and cusp fiber

Miracle: When a variety is smooth projective then its point count
over [F; knows topology via Frobenius weights and étale purity (the
finite field analogue of RH) through the Grothendieck-Lefschetz
trace formula under the Weil conjecture framework.
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V. Arnol’d, J. Milnor, M. Atiyah, G. Segal

1. Hom space Hom,(PL, PL) is the moduli space of morphisms
f : PL, — PL of degree n as f*OPIT(].) = lp = OPE(n)'

2. A morphism f : PL — PL consists of global sections (global
homogeneous polynomials) f = (so(u : v),s1(u : v)) where
deg(so) = deg(s1) = n and are coprime i.e. Res(sp,s1) # 0.

3. Consider f = (—27u*2v12 27410 — 5441212 4 27,10,14)
is a degree 4 morphism as the common factor is 27u1%v10

4. The rational maps and the morphisms coincide i.e.
f:PL --»PL = f:PL — PL (P4 smooth P projective)
after cancellation of common factors i.e. gcd(sp,s1) =1

5. PL(k(t))n = PL(k[t])n for PL with function field k(t) and
ring of integers Oy () = k[t] ~ ]P’IT(Q)ht(a/b) = IEDlr(Z)ht(a/b)



Arithmetic of X, .= Hom, (P}, P})

1. X, = P21 — V(Res(sp, s1)) is the open complement of
Resultant hypersurface Res(sp,s1) = 0 in P2"*1 thus it is an
open quasiprojective variety of dimension 2n+ 1

2. By Farb-Wolfson's seminal work (2016)
{Xn} — L2n+1 _ Lanl — ’Xn(IFq)‘ — q2n+1 _ q2n71

3. Both domain IP% and target IP’IT are unparameterized and
the action of an element of PGL, on the homogeneous
coordinates [u : v] of P, translates to an action on the global
sections s; of OPE(”) for i = 0,1 which are the homogeneous
coordinates of P(V) = P(1,...,1,1,...,1) = P2"*!

——— ——

n+1 times n+1 times

4. 1201 _[2n-1 = (L2 — 1) 122 as {PGL,} = L(L? — 1)



Topology of X, := Hom,(P},PY)

1. Hom} (P}, PL) — Hom,(Ph, PL) — PL via the evaluation
morphism evs : Hom,(PL, PL) — PL with f — f(o0) € PL

2. Fiber Hom}(PPL, PL) is the based mapping space which is
identical to the space of coprime polynomials Polygn’”)

Definition o

Fix a field K with algebraic closure K. Fix k, / > 0. Define Poly{*""

to be the set of pairs (u, v) of monic polynomials in K[z] so that:

2.1 degu =k and degv = /. -

2.2 u and v have no common root in K.

3. evy is a Zariski-locally trivial fibration via the transitive
action of Aut(PL) = PGL,

4. L2 — L2 = (L+1) - (L2 — L") as
{Homi;(Ph, P} )} = {Poly{""} = 127 — .27



Summary of Faltings’ Proof by H. Darmon

Faltings’ proof of Mordell’s conjecture is based on a sequence of maps (here
X is a curve of genus g defined over K and having good reduction outside of
the finite set S of primes of K):

K-rational Ry
points on X
Isomorphism classes of semistable

L, { abelian varieties of dimension ¢’

Curves of genus ¢’ over K’
with good reduction outside S’

with good reduction outside S’

Isogeny classes of abelian varieties
of dimension g’
with good reduction outside S’
Rational semisimple ¢-adic representations
of dimension 2¢’ unramified outside S

Construct the height moduli spaces W™ of rational points of
height n on moduli stacks of algebraic curves, abelian varieties,
and G-characters over global fields, and show that they are ‘of

finite type’, followed by an analogue of ‘Tate's algorithm’.



1. The map R; is given by Parshin’s construction, and is finite-to-one, by
the geometric theorem of De Franchis.

2. The map R, is defined by passing to the jacobian of a curve, and is
finite-to-one by Torelli’s theorem.

3. The map Rj is the obvious one, and is finite-to-one, by Falting’s funda-
mental Theorem 2.11 on finiteness of abelian varieties in a given isogeny
class.

4. The map R, is defined by passing to the Tate module, and is one-to-
one, thanks to the Tate conjectures proved by Faltings. The proof of
the Tate conjectures is obtained by combining a strategy of Tate with
the finiteness Theorem 2.11. These ideas are also used to show that
the Galois representations arising in the image of R4 are semisimple.

5. The last set in this sequence of maps is finite by the finiteness principle
for rational semisimple ¢-adic representations, which is itself a conse-
quence of the Chebotarev density theorem and the Hermite-Minkowski
theorem.

Better yet, show the rationality of motivic height zeta functions of
height moduli spaces, followed by the extraction of coefficients.



Stacky Heights on Algebraic Stacks wrt ‘Ample’ V

Ellenberg, Zureick-Brown, and Satriano extends the rational point
x € X(K) to a stacky curve, called a tuning stack (C,m,x) for x.

X

Spec(K) ——C—=5 X

N

C is a normal, 7 is a birational coarse space map.

Definition
If V is a vector bundle on X and x € X(K), the height of x with
respect to V is defined as

hty(x) = — deg(m.x*V")

for any choice of tuning stack (C, m,X).



Rational points on M;; = P(4,6) over K = k(C)
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Precise proportions of £/K motivated by NT

Theorem (Generic Torsion Freeness; Phillips)

The set of torsion-free elliptic curves over global function fields has
density 1. i.e., ‘Most elliptic curves over K are torsion free’.

Theorem (Boundedness; Tate-Shafarevich & Ulmer)

The ranks of non-constant elliptic curves over Fq(t) are
unbounded (in both the isotrivial and the non-isotrivial cases).



Ulmer’s non-isotrivial elliptic curve of infinite rank

1. Start with y2 + xy = x3 — t9, then complete the square via
y =y' — 5 and then complete the cubic via x = x' — 5. We
need char(k) # 2,3 to get to the short Weierstrass form

2. We get y? = x3 48x + 864 . Coefficients should be
mtegral thus we take A =2-3 to muItlpIy M to — 4 g and A6
to +ggz — t°.

3. We arrive at y? = x3 — 27x + 54 — 26.3% . ¢t9 thus
[— 25 5oz — t9] = [-27:54 —26.36. ¢9].

4. Remember the isomorphism, for any A € G,
VP =x+Ax+B] =2 [y =x>+ X" Ax+\° . B]

viax—= A"2-xand y — A3 .y by the Weighted
homogeneous coordinate of P(4,6).



® ® R Magma Calculator

Q

About Calculator Ordering FAQ Download Documentation

COMPUTER * ALGEBRA

Enter your code in the box below. Click on "Submit" to have it evaluated by Magma.

KK<t> FunctionField(GF(4007));

E := EllipticCurve([-27, 54 - 2"6x3°6xt"11]);
E;

&x+BadPlaces(E);

LocalInformation(E);

Submit

Elliptic Curve defined by y*2 = x"3 + 3980%x + (1428xt*11 + 54) over Univariate
rational function field over GF(4007)

711 + 1549

[ <(t"5 + 3335%t"4 + 2186%t"3 + 488kt"2 + 2393t + 906), 1, 1, 1, I1, false>,
<(175 + 33374t™4 + 2186%t"3 + 488xt"2 + 3369xt + 906), 1, 1, 1, I1, false>,
<(t), 11, 1, 11, I11, true>, <(1/t), 2, 2, 1, II, true>, <(t +1342), 1, 1, 1,
I1, false> ]



1. The corresponding elliptic surface has a fiber of Kodaira type
l4 at zero (at t = 0), while the fiber at infinity (at 1/t = 0) is
given by the congruence class d of d modulo 6 : (d,©)

(0, To) (I, I1%) (2, IV*) (3, 13) (4, V) (5, 1I)

2. Qutside char 2, 3, there are d fibres of type /1 at the zeroes of
432t — 1 (some of which may be merged if char(k)|d).

The aim of this paper is to produce elliptic curves over K = [Fp(t) which
are nonisotrivial (j & Fp) and which have arbitrarily large rank.

THEOREM 1.5.  Let p be an arbitrary prime number, F, the field of p
elements, and Fy(t) the rational function field in one variable over F,. Let E
be the elliptic curve defined over K = Fp(t) by the Weierstrass equation

y2+zy:za—td

where d = p™ + 1 and n is a positive integer. Then j(E) & Fp, the conjecture
of Birch and Swinnerton-Dyer holds for E over K, and the rank of E(K) 1is
at least (p" — 1)/2n.

By the Shioda-Tate formula and assuming maximal Picard number
of p = 10n for Faltings height n (while b, = 12n — 2), we know
that r = 10n — rk(T) where T is the trivial lattice. Ulmer's proof

shows that as the height of Ulmer's curve goes up as
n=1+[951] — oo, the algebraic/analytic rank r goes up to oo.



Sketch of Ulmer’s proof

1. Construct an elliptic surface S — P! over F, with generic
fiber E:y?+xy=x3—tdford=p"+1and necZ,.

2. Construct (and carefully study) a birational isomorphism
between S and Fy/G, the quotient of a Fermat surface i.e.
V(x4 4+ y9 4+ 29 + w?) C P3 (d = 4 then it is K3 surface).

3. Using the fact that the Tate conjecture for surfaces is known
for Fermat surfaces, one can deduce the Tate conjecture for S.

4. Use the fact that the Tate conjecture for S implies the Birch
and Swinnerton-Dyer conjecture for E. Thus the ranks of the
elliptic curves in the family all equal their analytic ranks.

5. The analytic ranks can be computed by relating the
L-function of E to the zeta function of S, which can be
related to the zeta function of Fy, which is known by Gauss
sum computation of Weil. From this one is able to compute
the analytic rank which is unbounded from below.



General Global Function Field Case

Theorem (Dori Bejleri-Tristan Phillips—Matthew
Satriano—Park; April 2025)

Let n € Z>5 and char(k) # 2, 3. Consider following moduli stacks
> WWmin of minimal elliptic fibrations over Cy of height n

> WS of minimal elliptic fibrations over Cj of height n having
exactly one specified singular fiber of Kodaira type © at a
(varying) degree-one place and semistable everywhere else.

Their respective weighted point counts satisfy asymptotically

(c(10) ¢

Cc(2) -1

where k(©,) is an explicit ratio in g depending only on type ©

im NO(E(C). B)

Bsoo NM(Fo(C), B) |C(Fq)l



Reduction type © with j € My1 | k(©,)
Tx>o with j = oo qq—_zl
IT with j =0 qq—gl
I1I with j = 1728 e
IV with j =0 qq—;l
I} With j = 0o o
I with j # 0,1728

I with j = 0,1728 qq——ﬁl
IV* with j =0 e
IIT* with j = 1728 qq—;l
IT* with j =0 iy

We could specialize to the K = F(t) case where we know the

exact values of |C(]Fq)|icc((120)) by |PY(F,)| = g + 1 and

G () =1/1-q)1~q-q7°).




	Fundamental Question in Number Theory

