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Rational points on projective varieties over Q

Figure 1: Rational points on the unit circle x2 + y2 = 1 over Q



1. Geometry is enlightening and quadratic formula is awesome

(x , y) =

(
t2 − 1

t2 + 1
,

2t

t2 + 1

)
∈ Q2

we parametrized all rational points on the unit circle over Q
2. Integral points on the projective conic

C := V (X 2 + Y 2 − Z 2) ⊂ P2

are precisely the Pythagorean triples:

[X : Y : Z ] = [a2 − b2 : 2ab : a2 + b2] ∈ Z3

3. Height measures arithmetic complexity: for gcd(a, b) = 1,

ht
(a
b

)
= max(|a|, |b|)

ht(4/10) = 5 and
ht(1000000001/1000000000) = 1000000001 ̸= 1

4. On projective varieties, the integral and the rational points
coincide (viewing [a : b] with gcd(a, b) = 1)

X (Q) = X (Z)



1. Parametrization needs a starting rational point. For instance,
the conic x2 + y2 = 3 has no rational point: X (Q) = ∅.
Showing this is genuinely arithmetic - Fermat’s method of
infinite descent or by Hasse–Minkowski for conics it suffices to
find one place v with X (Qv ) = ∅; here X (Q3) = ∅.

2. Higher degree curves are “Fermat’s Last Theorem”. For
x4 + y4 = 1 (a genus-3 curve), one has by Wiles-Taylor

X (Q) = {(±1, 0), (0,±1)}

More generally, by the Mordell–Faltings theorem, if X/Q is a
smooth projective curve of genus ≥ 2, then X (Q) is finite.

3. For an elliptic curve over Q in Weierstrass form

E : y2 = x3 + Ax + B,

there is still no general algorithm that, given A,B ∈ Q, always
determines the full set E (Q) explicitly.

4. But we do have a canonical rational point: the point at infinity

∞ = [0 : 1 : 0] ∈ E (Q), E = V
(
Y 2Z−X 3−AXZ 2−BZ 3

)
⊂ P2



Degree of countable infinity, the rank

(1) (Mordell–Weil) For an elliptic curve E/Q, the group of
rational points is finitely generated:

E (Q) ∼= Z r ⊕ E (Q)tors,

where r ≥ 0 is the Mordell–Weil rank and E (Q)tors is finite.

(2) Fundamental questions about r :
▶ An algorithm that is guaranteed to correctly compute r?

▶ Which values of r can occur? How often do they occur?

▶ Is there an upper limit? Can r be arbitrarily large?

(3) Records: the current best explicit examples with largest rank
is Elkies–Klagsbrun (announced 2024) produced an E/Q with
rank at least 29 (the previous unconditional record was ≥ 28
from Elkies, 2006).





Fix a height ht(E ) e.g. naive height for a minimal Weierstrass
model E : y2 = x3 + Ax + B with no p4|A and p6|B:

ht(E ) := max{ 4|A|3, 27|B|2 }

E(≤ X ) := {E/Q up to Q-isomorphism : ht(E ) ≤ X }

Conjecture (Goldfeld; Katz–Sarnak (rank distribution))

As X → ∞,

|{E/Q ∈ E(≤ X ) : r = 0}|
|E(≤ X )|

→ 1
2 ,

|{E/Q ∈ E(≤ X ) : r = 1}|
|E(≤ X )|

→ 1
2 ,

and
|{E/Q ∈ E(≤ X ) : r ≥ 2}|

|E(≤ X )|
→ 0.

To talk about average, we first need N (Q, X ) := |E(≤ X )|



The Shafarevich conjecture for algebraic curves

Q: How many algebraic curves over a global field are there?

A: Infinitely many, so fix invariants and bound the “bad places”.

Q: Let K be a number field with ring of integers OK , and let S
be a finite set of primes of OK . How many K -isomorphism
classes of smooth projective curves X/K of genus g have
good reduction at all primes p /∈ S?

A: I. R. Shafarevich (ICM 1962): this set should be finite.



Finiteness / Effectivity / Exact Counts

▶ Shafarevich conjecture: for each triple (K , g ,S), there are
only finitely many isomorphism classes of smooth projective
curves C/K of genus g with good reduction outside S .

▶ Parshin: Shafarevich finiteness ⇒ Mordell finiteness (via
Parshin’s covering construction). Faltings (1983):
Shafarevich finiteness for abelian varieties over number fields
⇒ Mordell’s conjecture for curves over number fields.

▶ However, these results are ineffective they prove finiteness but
they do not give an explicit list, or even a good upper bound.

Question
Can we go beyond finiteness and obtain exact counting formulas?

Answer
Yes, for g = 1 over K = Fq(t) via height moduli and its inertia.



Elliptic surfaces /k = Families of elliptic curves /K

The study of fibrations of curves lies at the heart of the
Enriques-Kodaira classification of algebraic surfaces.

Definition. An elliptic surface is a proper flat morphism

f : X → C

from a smooth projective surface X to a smooth projective curve C
such that the geometric generic fiber is a smooth curve of genus 1.

In this talk we focus on the standard arithmetic setup:

C = P1, and f admits a section O : P1 ↪→ X

(the zero section), which meets the smooth locus of f .



Geography (K 2
X , χ(OX )) = (0, n)

Let f : X → P1 be a relatively minimal elliptic surface with a
section, and set n := χ(OX ) (so deg∆ = 12n).

1. n = 1 (rational elliptic surface). Then X is rational and
κ(X ) = −∞. Generically, ∆ has 12 simple zeros, i.e. 12 nodal
fibres (type I1). One construction: take a pencil of plane
cubics in P2 and blow up its 9 base points.

2. n = 2 (elliptic K3 surface). Then X is a projective K3
surface with an elliptic fibration, hence κ(X ) = 0. Generically,
∆ has 24 simple zeros, i.e. 24 nodal fibres; moduli dim = 18.

3. n ≥ 3 (minimal properly elliptic surface). Then κ(X ) = 1.
Generically, ∆ has 12n simple zeros, i.e. 12n nodal fibres.



Birkar’s σ(t) in the elliptic surface case (A = S)

Let f : X → P1 be a height–n elliptic surface with section S . To
compare with Birkar’s setup for stable lc minimal models, take

B = 0, A = S , Z = P1, κ(KX ) = 1 (n ≥ 3).

Birkar’s associated polynomial is

σ(t) = (KX + B + tA)2 = (KX + tS)2 = K 2
X + 2(KX ·S) t + S2t2.

For a relatively minimal elliptic surface of Kodaira dimension 1,

K 2
X = 0, S2 = −n, KX · S = n − 2,

hence
σ(t) = 2(n − 2) t − n t2



Deligne–Mumford stack M1,1 of stable elliptic curves

The stack M1,1 is a smooth proper Deligne–Mumford stack
parametrizing stable elliptic curves (genus 1 stable curves with a
section). Its coarse moduli space, the j–line, is M1,1

∼= P1.

Assume char(K ) ̸= 2, 3. Then there is an isomorphism

(M1,1)K ∼=
[
(SpecK [a4, a6] \ {(0, 0)})/Gm

]
=: PK (4, 6),

where Gm acts by λ · (a4, a6) = (λ4a4, λ
6a6), corresponding to the

short Weierstrass form

Y 2 = X 3 + a4X + a6.

The special stabilizers occur at the orbifold points

[1 : 0] and [0 : 1], with stabilizers µ4 and µ6,

while a general point has stabilizer µ2 (coming from the
hyperelliptic involution on an elliptic curve).



Fix a field k. A family of stable elliptic curves with a section
over P1

k is equivalent to a morphism φ : P1 −→ M1,1.

X

f
��

ν // Y := φ∗(E1,1) //

g

��

E1,1

p

��

P1 P1 φ
//M1,1

Here p : E1,1 → M1,1 is the universal stable elliptic curve,
g : Y → P1 is the pulled-back stable family, and ν : X → Y is the
relatively-minimal resolution (Ak singularity to Ik+1 fiber).

Define the height = degree of φ to be n := deg
(
φ∗OM1,1

(1)
)

then the moduli stack of stable elliptic fibrations over the P1 with
Deg(∆) = 12n and a section is Homn(P1,M1,1).

Equivalently, writing M1,1 ≃ P(4, 6), a morphism φ is given by

φ = (a4(u, v), a6(u, v)), deg(a4) = 4n, deg(a6) = 6n,

with Res(a4, a6) ̸= 0 (so a4, a6 do not vanish simultaneously).



Projective elliptic K3 surface of height n = 2

y2 = x3 + a4(u : v)x + a6(u : v)

Weierstrass data for elliptic fibration on algebraic K3 surface,{
a4(u : v) = −3u4v4,

a6(u : v) = u5v5(u2 + v2).

Then we have ∆ = 4a34 + 27a26 and j = 1728 · 4a34/∆{
∆ = 27u10v10(u − v)2(u + v)2,

j = 1728 · − 4u2v2

(u−v)2(u+v)2
.

The j-map j : P1 → M1,1
∼= P1 is always a morphism but lost the

valuation data crucial for Tate’s algorithm to find out what are
(additive) singular fibers at [0 : 1] for t = 0 and [1 : 0] for t = ∞.



Isotrivial rational elliptic surface of height n = 1



Vanishing γ ⇔ Reduction type Θ ⇔ Twisting Γ

Theorem (Bejleri–Park–Satriano; April 2024)

If char(K ) ̸= 2, 3. Then the twisting condition (r , a) and the order
of vanishing of j at j = ∞ determine the Kodaira fiber type, and
(r , a) is in turn determined by m = min{3ν(a4), 2ν(a6)}.

γ : (ν(a4), ν(a6)) Reduction type with j ∈ M1,1 Γ : (r , a)

(≥ 1, 1) II with j = 0 (6, 1)

(1,≥ 2) III with j = 1728 (4, 1)

(≥ 2, 2) IV with j = 0 (3, 1)

(2, 3) I∗k>0 with j = ∞ (2, 1)

I∗0 with j ̸= 0, 1728

(≥ 3, 3) I∗0 with j = 0 (2, 1)

(2,≥ 4) I∗0 with j = 1728 (2, 1)

(≥ 3, 4) IV∗ with j = 0 (3, 2)

(3,≥ 5) III∗ with j = 1728 (4, 3)

(≥ 4, 5) II∗ with j = 0 (6, 5)



▶ ψ : C 99K M1,1: the minimal weighted linear series (rational j–map)
(a4, a6) ∈ H0

(
C ,O(4n)⊕O(6n)

)
with γx = (νx(a4), νx(a6)), minimal in

the sense that there is no point x ∈ C with νx(a4) ≥ 4 and νx(a6) ≥ 6.

▶ φ : C → M1,1 is the associated representable twisted morphism with
twisting data Γ = (r , a), obtained by taking root stacks at the
indeterminacy points of ψ (via Bejleri–Park–Satriano correspondence). It
induces a unique stable family over the stacky curve h : Y → C and, by
passing to coarse moduli spaces, a twisted surface model g : Y → C .

▶ f̂ : X̂ → C is a resolution of singularities of Y . Contract the relative
(−1)–curves in f̂ : X̂ → C to obtain the relatively-minimal elliptic surface
f ′ : X ′ → C (with the prescribed Kodaira fibres). Its relative
log-canonical model is the Weierstrass model f : X → C .



Proper polarized cyclotomic stacks

▶ A separated algebraic stack X of finite type over k is
cyclotomic if every geometric stabilizer is cyclic:

Aut(x̄) ≃ µr (r ≥ 1)

▶ L is uniformizing if each stabilizer acts faithfully on L|x̄ , i.e.

Aut(x̄) ↪→ Gm

Equivalently, the classifying map X → BGm is representable.

▶ Let π : X → X be the coarse moduli space. For a uniformizing
L, there exists M ≥ 1 and a line bundle L on X such that

L⊗M ∼= π∗L

▶ L is polarizing if one can choose M so that L is ample on X .
Then (X ,L) is a polarized cyclotomic stack.

▶ Example: For a locally closed substack X ⊂ P(w), the
pullback OP(w)(1)|X is polarizing.



▶ M1,1
∼= P(4, 6) over Z

[
1
6

]
then Hodge bundle is λ ≃ OP(4,6)(1)

λ⊗12 ∼= c∗OP1(1),
(
12 = lcm(4, 6)

)
▶ Elliptic curves with level structure Genus 0 modular curves:

M1,1[Γ1(2)] ∼= P(2, 4), M1,1[Γ1(3)] ∼= P(1, 3), M1,1[Γ1(4)] ∼= P(1, 2),

and for m ∈ {5, 6, 7, 8, 9, 10, 12} one has M1,1[Γ1(m)] ∼= P1 (over
Spec(Z[1/m])); also M1,1[Γ(2)] ∼= P(2, 2)

▶ Genus 1 with marked points (Smyth stability). Examples include

M1,2(1) ∼= P(2, 3, 4), M1,3(2) ∼= P(1, 2, 2, 3),

M1,4(3) ∼= P(1, 1, 1, 2, 2), M1,5(4) ∼= P5

▶ Hyperelliptic genus g ≥ 2. The stack of monic odd-degree
hyperelliptic curves is

H2g [2g−1] ∼= P(4, 6, 8, . . . , 4g+2)

(in char(K ) = 0, and in char(K ) > 2g+1)



Height moduli stacks on cyclotomic stacks

Fix a smooth projective curve C/k with function field K = k(C ), a
proper polarized cyclotomic stack (X ,L) over a perfect field k.

Theorem (Bejleri–Park–Satriano; April 2024)

For each n ∈ Z≥0 there is a separated Deligne–Mumford stack
Mn,C (X ,L) of finite type over k (with quasi-projective coarse
moduli space) equipped with a canonical bijection

Mn,C (X ,L)(k) = {P ∈ X (K ) : htL(P) = n }.

In particular, finite type is a geometric incarnation of the Northcott
property for the stacky height.



1. There is a finite locally closed stratification⊔
Γ,d

HΓ
d ,C (X ,L)/SΓ → Mn,C (X ,L)

where HΓ
d ,C are moduli spaces of twisted maps and the union

runs over all possible admissible local conditions

Γ = ({r1, a1}, . . . , {rs , as})

and degrees d for a twisted map to (X ,L) satisfying

n = d +
s∑

i=1

ai
ri

and SΓ is a subgroup of the symmetric group on s letters that
permutes the stacky points of the twisted map.

2. Under the bijection in part (1), each k-point of
HΓ

d ,C (X ,L)/SΓ corresponds to a K -point P with the stable
height and local contributions given by

htstL (P) = d

{
δi =

ai
ri

}s

i=1

.



Theorem (Bejleri–Park–Satriano; April 2024)

Let f : C 99K P(λ⃗) be a rational map of smooth projective curve
C, and let P ∈ PC (λ⃗)(K ) denote the corresponding rational point
over K = k(C ). Let {xj} be the indeterminacy points of f .

1. Let (L, s0, . . . , sN) be any λ⃗-weighted linear series inducing f .
Then the universal tuning stack (C, π,P) of P is the root
stack of C obtained by taking the rj -th root at xj , where
rj = rmin(xj ; L, s0, . . . , sN). Moreover, the induced morphism

on stabilizers over xj is given by the character χ
−aj
j where

aj = amin(xj , L, s0, . . . , sN).

2. A wls (L, s0, . . . , sN) is minimal if for each indeterminacy
point x ∈ C, there exists an j such that νx(sj) < λi . There

exists a unique minimal λ⃗-weighted linear series inducing f .

3. The stacky height htO(1)(P) is equal to deg L where
(L, s0, . . . , sN) is the unique minimal linear series. Moreover,
the stable height is given by htstO(1)(P) = degP

∗O(1) and the

local contribution at xj is given by δxj (P) =
aj
rj
[k(xj) : k].



Specializing to the canonical case M1,1 ≃ P(4, 6)

1. Rational points = Minimal weighted linear series. For
K = k(C ), an elliptic curve E/K is a K–point of M1,1, i.e. a
minimal Weierstrass data (a4, a6) ∈ H0

(
C ,O(4n)⊕O(6n)

)
with no x ∈ C : νx(a4) ≥ 4 and νx(a6) ≥ 6.

2. Minimal weighted linear series = Twisted morphisms.
Vanishing orders at a point p ∈ C ,

γp = (νp(a4), νp(a6)),

determine twisting data Γp = (rp, ap) and hence the C → C .

3. MMP dictionary (the bridge to Birkar). Fixing vanishing
profile γ (resp. twisting profile Γ) gives strata Wγ

n,C (resp.

HΓ
d ,C ), which parameterize canonical/stable models of the

associated elliptic surfaces with a specified singular fibers.

Equivalently: this is the surface MMP for the pair (X , cS)
(wall-crossing in c) packaged in moduli.



8 Different Types of Additive Bad Reductions

Let κ := lcm{λ0, . . . , λN} and λ̄j := κ/λj as usual.

Lemma (Dori Bejleri–JP–Matthew Satriano; April 2024)

Suppose κ > 1. Then the map

m 7→
(

κ

gcd(m, κ)
,

m

gcd(m, κ)

)
induces a bijection from the set {1, . . . , κ− 1} to the set

{(r , a) : 1 ≤ a < r , r |κ, gcd(r , a) = 1}

For M1,1
∼= P(4, 6) we have κ = 12 which means we have

m ∈ {2, 3, 4, 6, 8, 9, 10} ({1, 5, 7, 11} are excluded as prime) that
corresponds to following rooting data m = 2 7→ 1

6 , m = 3 7→ 1
4 ,

m = 4 7→ 1
3 , m = 6 7→ 1

2 , m = 8 7→ 2
3 , m = 9 7→ 3

4 , m = 10 7→ 5
6

which correspond to 7 + 1 types of additive reductions.
(+1 since ramification at j = ∞ for I∗k>0)



Suppose that normalized base multiplicity m = 3. This occurs if
and only if (ν(a4), ν(a6)) = (1,≥ 2). Then r = 12/ gcd(3, 12) = 4
and a = 3/ gcd(3, 12) = 1. Thus the stabilizer of the twisted curve
acts on the central fiber of the twisted model via the character
µ4 → µ4, ζ4 7→ ζ−1

4 . In particular, the central fiber E of Y has
j = 1728. The µ4 action on E has two fixed points, and there is an
orbit of size two with stabilizer µ2 ⊂ µ4. Let E0 be the image of E
in the twisted model Y . As E appears with multiplicity 4, Y has
1
4(−1,−1) quotient singularities at the images of the the fixed
points and a 1

2(−1,−1) singularity at the image of the orbit of size
two. Each of these singularities is resolved by a single blowup to
obtain X̂ with central fiber 4Ẽ0 + E1 + E2 + E3 where Ei are the
exceptional divisors of the resolution for i = 1, 2, 3 and
E 2
1 = E 2

2 = −4 with E 2
3 = −2. Then Ẽ0 is a (−1)-curve so it needs

to be contracted. After this contraction E2 becomes a (−1) curve
and must also be contracted. Since Ei for i = 1, 2, 3 are incident
and pairwise transverse after blowing down Ẽ0, then the images of
E1 and E2 must be tangent after blowing down E3. Moreover, they
are now (−2)-curves and the relatively minimal model for type III.



Geometric Meaning of Height Moduli Framework

1. So one can run the resolution / minimal model. As these are
algebraic surfaces it can be done over char(K ) = p > 0

2. A twisted morphism φ : C → M1,1 with its twisting data Γ
from the universal tuning stack C induces a stable stack-like
model h : Y → C as a unique pullback of the universal family
p : E → M1,1. All the ensuing birational geometry is natural.

3. True purpose of a representable classifying morphism is in
the universal principle that φ intrinsically contains all the
algebro-geometric data necessary to uniquely determine a
fibration with singular fibers. This is the very essence of the
inner arithmetic of rational points on moduli stacks over K .



1. Consider the fact that M1,1 could have been any other
algebraic stack X (such as Mg or Ag ) which is the
representing object for certain moduli functor as the fine
moduli stack together with the universal family p : E → X .

2. Representable classifying morphisms as twisted morphisms
φ : C → X uniquely determines certain families of varieties (of
algebraic curves or abelian varieties) with non-abelian
stabilizers (g ≥ 2). And they naturally have corresponding
“Tate’s algorithm”, counting statements and so on.

3. Geometrizing X (K ) leads to Height moduli space Mn(X ,V).
Once we have a space, we compute its invariants, consider
all invariants simultaneously via generating series and show
the motivic height zeta function’s rationality, naturally
having various kinds of consequences.



Arithmetic of algebraic stacks over finite fields

▶ The weighted point count of a finite-type alg. stack X/Fq is

#q(X ) :=
∑

[x]∈X (Fq)/∼=

1

|Aut(x)|

▶ We also want the actual count of isomorphism classes

|X (Fq)/ ∼= |

which is immune to the Grothendieck-Lefschetz trace formula.

The inertia stack IX parametrizes pairs (x ,Aut(x))

Theorem (Changho Han–Park)

Let X/Fq be an algebraic stack of finite type with quasi-separated
finite type diagonal. Then

#q(IX ) = |X (Fq)/ ∼= |.



Ekedahl in 2009 introduced the Grothendieck ring K0(Stckk)

Definition (Ekedahl)

Fix a field k. The Grothendieck ring K0(Stckk) is the abelian
group generated by isomorphism classes {X} of finite-type
algebraic stacks over k with affine stabilizers, modulo:

▶ Scissor relation: if Z ⊂ X is closed, then

{X} = {Z}+ {X \ Z};

▶ Vector bundle relation: if E → X is a rank n vector bundle,
then

{E} = {X × An}.

Multiplication is induced by products: {X} · {Y} := {X × Y}.

Let L := {A1} (the Lefschetz motive). Then

{PN} = 1 + L+ · · ·+ LN , {Gm} = L− 1.



Universal for additive & multiplicative invariants

For any ring R and any function ν̃ : Stckk → R satisfying relations
1) ν̃(X ) = ν̃(Y) whenever X ∼= Y,
2) ν̃(X ) = ν̃(U) + ν̃(X \ U) for U ↪→ X an open immersion,
2) ν̃(X × Y) = ν̃(X ) · ν̃(Y),
there is a unique ring homomorphism ν : K0(Stckk) → R

Stckk
{ }

yy

ν̃

!!

K0(Stckk) ν
// R

Such homomorphism ν are called motivic measures.

∴ When k = Fq, the point counting measure {X} 7→ #q(X ) is a
well-defined ring homomorphism #q : K0(StckFq) → Q giving the
weighted point count #q(X ) of X over Fq.

∴ When k = C, χc and the Hodge–Deligne polynomial E (−; u, v).



How many elliptic curves over k = Fq upto isom?

The inertia stack IM1,1 parametrizes [E ] and automorphism
groups ([E ],Aut[E ]). To keep track of the primitive roots of unity

contained in Fq, define function δ(x) :=

{
1 if x divides q − 1,

0 otherwise.

{M1,1} = L

For the inertia stack IM1,1 for char(k) ̸= 2, 3 is equal to

{IM1,1} = 2L+ δ(6) · 4 + δ(4) · 2
which translates to the following for k = Fq with char(Fq) ̸= 2, 3

{IM1,1} = 2L+ 6, if q ≡ 1 mod 12,

= 2L+ 2, if q ≡ 5 mod 12,

= 2L+ 4, if q ≡ 7 mod 12,

= 2L, if q ≡ 11 mod 12.



Sharp enumerations over rational function field

Define height of discriminant ∆ over Fq(t) as ht(∆) := qdeg∆

Elliptic case: Deg(∆) = 12n =⇒ ht(∆) = q12n for n ∈ Z≥0

N (Fq(t),B) :=
∣∣∣{E/Fq(t) up to Fq(t)-isomorphism : 0 < ht(∆) ≤ B

}∣∣∣
Theorem (Bejleri–Park–Satriano; April 2024)

Let char(Fq) > 3 and δ(x) :=

{
1 if x divides q − 1,

0 otherwise.
, then

N (Fq(t), B) = 2

(
q9 − 1

q8 − q7

)
B5/6 − 2B1/6

+ δ(6) · 4
(

q5 − 1

q5 − q4

)
B1/2 + δ(4) · 2

(
q3 − 1

q3 − q2

)
B1/3

+ δ(6) · 4 + δ(4) · 2



Origins of the terms in N (Fq(t),B)

▶ 2
( q9 − 1

q8 − q7

)
B5/6: non-constant µ2–twist families that are either

non-isotrivial, or isotrivial with j ̸= ∞.

▶ − 2B1/6: non-constant µ2–twist families of generically singular
isotrivial elliptic curves with j = ∞.

▶ δ(6) · 4
( q5 − 1

q5 − q4

)
B1/2: non-constant µ6–twist families of isotrivial

elliptic curves with j = 0.

▶ δ(4) · 2
( q3 − 1

q3 − q2

)
B1/3: non-constant µ4–twist families of isotrivial

elliptic curves with j = 1728.

▶ δ(6) · 4: constant elliptic curves with j = 0.

▶ δ(4) · 2: constant elliptic curves with j = 1728.



Geometric Tate’s algorithm



Sieving by minimality on ambient projective stacks

▶ A weighted linear series may fail to be minimal (so it does not
represent a height-n rational point). The minimality defect e
measures how far it is from being minimal.

▶ Quotient–remainder of the base profile. Let µ = (µi ) be the
normalized base profile and fix κ (the minimality threshold). Write
uniquely

µi = κqi + ri , qi ∈ Z≥0, 0 ≤ ri < κ.

Define

q(µ) := (qi ), r(µ) := (ri ), e := |q(µ)| =
∑
i

qi .

▶ Sieve viewpoint. We start from the ambient parameter space of all
weighted linear series (including non-minimal ones), and sieve out
the bad locus by stratifying according to the defect e:

ambient =
⊔
e≥0

(defect e), minimal locus = (defect 0).

Motivic analogue of inclusion–exclusion: we control the complement
of the minimal locus by understanding the defect strata.



Algebraization via motives & Run Euler product

Corollary (Bejleri–Park–Satriano; April 2024)

After finite constructible stratification of source and target, the map

ψn :
n⊔

e=0

Wmin
n−e × P(V 1

e ) → P

(
N⊕
i=0

V
λj
n

)

is an isomorphism on each stratum (hence induces equality of motives).

▶ Moral. For additive invariants, we can replace a space by any other
space with the same motivic class:

{X} = {Y } in K0(Stckk) =⇒ ν(X ) = ν(Y ) for every motivic measure ν.

▶ How this is used. To compute an arithmetic invariant of X ,
stratify into locally closed pieces X =

⊔
i Xi and add:

{X} =
∑
i

{Xi}.

If X is hard, replace it by a stratified-isomorphic Y whose pieces are
computable, and use {X} = {Y }.



Motivic Height Zeta Function as Generating Series

Definition

The motivic height zeta function of P(λ0, . . . , λN) is the formal
power series

Z
λ⃗
(t) :=

∑
n≥0

{
Wmin

n

}
tn ∈ K0(Stck)JtK

where Wmin
n is the space of minimal weighted linear series on P1 of

height n. We also define the variant

IZ
λ⃗
(t) :=

∑
n≥0

{
IWmin

n

}
tn ∈ K0(Stckk)JtK



1. We denote the usual motivic zeta function of P1 by

Z (t) =
∑

{Syme P1}te =
1

(1− Lt)(1− t)

2. We stratify by minimality defect e to obtain an equality{
P

(
N⊕
i=0

V λi
n

)}
=

n∑
e=0

{Wmin
n−e}{Syme P1}

which implies∑
n≥0

{
P

(
N⊕
i=0

V λi
n

)}
tn = Z

λ⃗
(t) · Z (t) (1)

3. Homogeneous polynomials live in compact ambient stack!

∑
n≥0

{
P

(
N⊕
i=0

V λi
n

)}
tn =

{PN}+ LN+1{P|λ⃗|−N−2}t
(1− t)(1− L|λ⃗|t)



Rationality of Motivic Height Zeta Function

Fix weights λ⃗ = (λ0, . . . , λN) and let |λ⃗| : =
∑N

i=0 λi . Suppose for
simplicity that k contains all lcm = lcm(λ0, . . . , λN) roots of unity.

Theorem (Bejleri–Park–Satriano; April 2024)

For k, λ⃗ as above and C = P1
k , consider Wmin

n and its inertia stack
IWmin

n . We have the following formulas over K0(Stckk).∑
n≥0

{Wmin
n }tn =

1− Lt
1− L|λ⃗|t

(
{PN}+ LN+1{P|λ⃗|−N−2}t

)
∑
n≥0

{IWmin
n }tn =

∑
g∈µlcm(k)

1− Lt
1− L|λ⃗g |t

(
{PNg }+ LNg+1{P|λ⃗g |−Ng−2}t

)
where g runs over the lcm roots of unity and λ⃗g is a subset of λ⃗ of size
Ng + 1 depending explicitly on the order of g .



Theorem (Bejleri–Park–Satriano; April 2024){
Wmin

n=1(P(λ⃗))
}
= {PN}(L|λ⃗| − L) + LN+1{P|λ⃗|−N−2}{

Wmin
n≥2(P(λ⃗))

}
= L(n−2)|λ⃗|+N+2(L|λ⃗|−1 − 1){P|λ⃗|−1}

Take |λ⃗| = 10 and N = 1 as M1,1
∼= P(4, 6) over Z [1/6].

1. When n = 1, X is a Rational elliptic surface.

{Wmin
1 }=L11+L10+L9+L8+L7+L6+L5+L4+L3−L

2. When n = 2, X is algebraic K3 surface with elliptic fibration
(i.e., Projective elliptic K3 surface with moduli dim. 18).

{Wmin
2 }=L21+L20+L19+L18+L17+L16+L15+L14+L13−L11−L10−L9−L8−L7−L6−L5−L4−L3

=L(L2−1)(L18+L17+2L16+2L15+3L14+3L13+4L12+4L11+5L10+4L9+4L8+3L7+3L6+2L5+2L4+L3+L2)



Motives of moduli stacks of elliptic surfaces

Theorem (Bejleri–Park–Satriano)

Let char(k) ̸= 2, 3. The motives (modulo {PGL2}) of moduli
stacks W Θ

min,n of minimal Weierstrass fibrations with a single
Kodaira fiber Θ and at worst multiplicative reduction elsewhere is

Reduction type Θ with j ∈ M1,1 |γ| {W Θ
min,n} ∈ K0(StckK )

Ik>0 with j = ∞ 0 L10n−2

II with j = 0 2 L10n−3

III with j = 1728 3 L10n−4

IV with j = 0 4 L10n−5

I∗k>0 with j = ∞ 5 L10n−6 − L10n−7

I∗0 with j ̸= 0, 1728

I∗0 with j = 0, 1728 6 L10n−7

IV∗ with j = 0 7 L10n−8

III∗ with j = 1728 8 L10n−9

II∗ with j = 0 9 L10n−10



Motivic Analytic Number Theory Praxis

Moduli of minimal stable E/Fq(t) is L12n = Homn(P1,M1,1)

Theorem (Changho Han–Park)

Grothendieck class in K0(Stckk) with char(k) ̸= 2, 3,

{L12n} = L10n+1 − L10n−1

Weighted point count over Fq with char(Fq) ̸= 2, 3,

#q(L12n) = q10n+1 − q10n−1

Exact number of Fq–isomorphism classes with char(Fq) ̸= 2, 3,

|L12n(Fq)/ ∼ | = #q(IL12n) = 2 · (q10n+1 − q10n−1)

ZFq(t)(B) =

⌊
logqB
12

⌋∑
n=1

|L1,12n(Fq)/ ∼ | = 2 · (q11−q9)
(q10−1)

·
(
B

5
6 − 1

)



Theorem (Park; July 2025)

For q = 3r , there are 4/6 twists at supersingular j = 0

▶ r is odd :

N (Fq(t), B) = 2

(
q9 − 1

q8 − q7

)
B5/6 − 2B1/6

+ 2

(
q7 − 1

q7 − q6

)
B2/3 − 2

(
q3 − 1

q4 − q3

)
B1/3

▶ r is even :

N (Fq(t), B) = 2

(
q9 − 1

q8 − q7

)
B5/6 − 2B1/6

+ 4

(
q7 − 1

q7 − q6

)
B2/3 − 4

(
q3 − 1

q4 − q3

)
B1/3



Theorem (Park; July 2025)

For q = 2r , there are 3/7 twists at supersingular j = 0

▶ r is odd :

N (Fq(t), B) = 2

(
q9 − 1

q8 − q7

)
B5/6 − 2B1/6

+

(
q8 − 1

q8 − q7

)
B3/4 −

(
q5 − 1

q6 − q5

)
B1/2

− 2q + 4

▶ r is even :

N (Fq(t), B) = 2

(
q9 − 1

q8 − q7

)
B5/6 − 2B1/6

+ 5

(
q8 − 1

q8 − q7

)
B3/4 − 5

(
q5 − 1

q6 − q5

)
B1/2

− 2q + 4



Happy New Year!

Thank you!



Accessing Cruder Level of Topology via Motives

A priori, point counts over Fq shouldn’t know any topology.

In A2
k , cusp singular fiber II and affine line A1 have the same point

counts (motives) i.e. {II = V (y2 = x3)} = L = {A1 = V (x)} but
they have very different topology.

Same motive since we have a stratification of II = X1 ∪ X2 where
X1 = II− {pt} and X2 = {pt} and A1 = Y1 ∪ Y2 where
Y1 = A1 − {pt} and Y2 = {pt}.

Indeed, X1
∼= Y1 (smooth complement) and X2

∼= Y2 (a singular
point is just like a smooth point as Spec(k)) i.e. they are
cut-and-paste equivalent and naturally {II} = {A1} = L

Same for nodal cubic {I1 = V (y2 = x3 + x2)} = L



Different topology since, II and I1 have arithmetic genus 1 (they
are singular elliptic curves) whereas A1 has arithmetic genus 0

Singular point on II is the tip of a cone over the trefoil knot
whereas singular point on I1 is the tip of a cone over the Hopf link.
(Every isolated singularity of a complex curve in a complex surface
can be described topologically as the tip of a cone on a link)

Miracle: When a variety is smooth projective then its point count
over Fq knows topology via Frobenius weights and étale purity (the
finite field analogue of RH) through the Grothendieck-Lefschetz
trace formula under the Weil conjecture framework.





V. Arnol’d, J. Milnor, M. Atiyah, G. Segal

1. Hom space Homn(P1
D ,P1

T ) is the moduli space of morphisms
f : P1

D → P1
T of degree n as f ∗OP1

T
(1) ∼= LP1

D

∼= OP1
D
(n).

2. A morphism f : P1
D → P1

T consists of global sections (global
homogeneous polynomials) f = (s0(u : v), s1(u : v)) where
deg(s0) = deg(s1) = n and are coprime i.e. Res(s0, s1) ̸= 0.

3. Consider f = (−27u12v12, 27u14v10 − 54u12v12 + 27u10v14)
is a degree 4 morphism as the common factor is 27u10v10

4. The rational maps and the morphisms coincide i.e.
f : P1

D 99K P1
T = f : P1

D → P1
T (P1

D smooth P1
T projective)

after cancellation of common factors i.e. gcd(s0, s1) = 1

5. P1
T (k(t))n = P1

T (k[t])n for P1
D with function field k(t) and

ring of integers Ok(t) = k[t] ∼ P1
T (Q)ht(a/b) = P1

T (Z)ht(a/b)



Arithmetic of Xn := Homn(P1
D ,P1

T )

1. Xn = P2n+1 − V (Res(s0, s1)) is the open complement of
Resultant hypersurface Res(s0, s1) = 0 in P2n+1 thus it is an
open quasiprojective variety of dimension 2n + 1

2. By Farb-Wolfson’s seminal work (2016)
{Xn} = L2n+1 − L2n−1 → |Xn(Fq)| = q2n+1 − q2n−1

3. Both domain P1
D and target P1

T are unparameterized and
the action of an element of PGL2 on the homogeneous
coordinates [u : v ] of P1

D translates to an action on the global
sections si of OP1

D
(n) for i = 0, 1 which are the homogeneous

coordinates of P(V ) = P(1, . . . , 1︸ ︷︷ ︸
n+1 times

, 1, . . . , 1︸ ︷︷ ︸
n+1 times

) = P2n+1

4. L2n+1 − L2n−1 = L(L2 − 1) · L2n−2 as {PGL2} = L(L2 − 1)



Topology of Xn := Homn(P1
D ,P1

T )

1. Hom∗
n(P1

D ,P1
T ) ↪→ Homn(P1

D ,P1
T ) → P1

T via the evaluation
morphism ev∞ : Homn(P1

D ,P1
T ) → P1

T with f 7→ f (∞) ∈ P1
T

2. Fiber Hom∗
n(P1

D ,P1
T ) is the based mapping space which is

identical to the space of coprime polynomials Poly
(n,n)
1

Definition
Fix a field K with algebraic closure K . Fix k, l ≥ 0. Define Poly

(k,l)
1

to be the set of pairs (u, v) of monic polynomials in K [z ] so that:

2.1 deg u = k and deg v = l .
2.2 u and v have no common root in K .

3. ev∞ is a Zariski-locally trivial fibration via the transitive
action of Aut(P1

T ) = PGL2

4. L2n+1 − L2n−1 = (L+ 1) · (L2n − L2n−1) as

{Hom∗
n(P1

D ,P1
T )} = {Poly(n,n)1 } = L2n − L2n−1



Summary of Faltings’ Proof by H. Darmon

Construct the height moduli spaces Wmin
n,K of rational points of

height n on moduli stacks of algebraic curves, abelian varieties,
and G -characters over global fields, and show that they are ‘of
finite type’, followed by an analogue of ‘Tate’s algorithm’.



Better yet, show the rationality of motivic height zeta functions of
height moduli spaces, followed by the extraction of coefficients.



Stacky Heights on Algebraic Stacks wrt ‘Ample’ V

Ellenberg, Zureick-Brown, and Satriano extends the rational point
x ∈ X (K ) to a stacky curve, called a tuning stack (C, π, x) for x .

Spec(K ) //

##

x

%%
C

π

��

x // X

C

C is a normal, π is a birational coarse space map.

Definition

If V is a vector bundle on X and x ∈ X (K ), the height of x with
respect to V is defined as

htV(x) := − deg(π∗x
∗V∨)

for any choice of tuning stack (C, π, x).



Rational points on M1,1
∼= P(4, 6) over K = k(C )



Precise proportions of E/K motivated by NT

Theorem (Generic Torsion Freeness; Phillips)

The set of torsion-free elliptic curves over global function fields has
density 1. i.e., ‘Most elliptic curves over K are torsion free’.

Theorem (Boundedness; Tate-Shafarevich & Ulmer)

The ranks of non-constant elliptic curves over Fq(t) are
unbounded (in both the isotrivial and the non-isotrivial cases).



Ulmer’s non-isotrivial elliptic curve of infinite rank

1. Start with y2 + xy = x3 − td , then complete the square via
y = y ′ − x

2 and then complete the cubic via x = x ′ − 1
12 . We

need char(k) ̸= 2, 3 to get to the short Weierstrass form.

2. We get y2 = x3 − 1
48x + 1

864 − td . Coefficients should be
integral thus we take λ = 2 · 3 to multiply λ4 to − 1

48 and λ6

to + 1
864 − td .

3. We arrive at y2 = x3 − 27x + 54− 26 · 36 · td thus
[− 1

48 : 1
864 − td ] = [−27 : 54− 26 · 36 · td ].

4. Remember the isomorphism, for any λ ∈ Gm[
y2 = x3 + Ax + B

] ∼= [y2 = x3 + λ4 · Ax + λ6 · B
]

via x 7→ λ−2 · x and y 7→ λ−3 · y by the Weighted
homogeneous coordinate of P(4, 6).





1. The corresponding elliptic surface has a fiber of Kodaira type
Id at zero (at t = 0), while the fiber at infinity (at 1/t = 0) is
given by the congruence class d of d modulo 6 : (d ,Θ)
(0, I0) (1, II

∗) (2, IV∗) (3, I∗0) (4, IV) (5, II)

2. Outside char 2, 3, there are d fibres of type I1 at the zeroes of
432td − 1 (some of which may be merged if char(k)|d).

By the Shioda-Tate formula and assuming maximal Picard number
of ρ = 10n for Faltings height n (while b2 = 12n − 2), we know
that r = 10n − rk(T ) where T is the trivial lattice. Ulmer’s proof
shows that as the height of Ulmer’s curve goes up as
n = 1 +

⌊
d−1
6

⌋
→ ∞, the algebraic/analytic rank r goes up to ∞.



Sketch of Ulmer’s proof

1. Construct an elliptic surface S → P1 over Fp with generic
fiber E : y2 + xy = x3 − td for d = pn + 1 and n ∈ Z+.

2. Construct (and carefully study) a birational isomorphism
between S and Fd/G , the quotient of a Fermat surface i.e.
V (xd + yd + zd + wd) ⊂ P3 (d = 4 then it is K3 surface).

3. Using the fact that the Tate conjecture for surfaces is known
for Fermat surfaces, one can deduce the Tate conjecture for S .

4. Use the fact that the Tate conjecture for S implies the Birch
and Swinnerton-Dyer conjecture for E . Thus the ranks of the
elliptic curves in the family all equal their analytic ranks.

5. The analytic ranks can be computed by relating the
L-function of E to the zeta function of S , which can be
related to the zeta function of Fd , which is known by Gauss
sum computation of Weil. From this one is able to compute
the analytic rank which is unbounded from below.



General Global Function Field Case

Theorem (Dori Bejleri–Tristan Phillips–Matthew
Satriano–Park; April 2025)

Let n ∈ Z≥2 and char(k) ̸= 2, 3. Consider following moduli stacks

▶ Wmin
n of minimal elliptic fibrations over Ck of height n

▶ WΘ
n of minimal elliptic fibrations over Ck of height n having

exactly one specified singular fiber of Kodaira type Θ at a
(varying) degree-one place and semistable everywhere else.

Their respective weighted point counts satisfy asymptotically

lim
B→∞

NΘ(Fq(C ), B)

Nmin(Fq(C ), B)
= |C (Fq)|

ζC (10)

ζC (2)
· q2

q2 − 1
· κ(Θu)

where κ(Θu) is an explicit ratio in q depending only on type Θ



Reduction type Θ with j ∈ M1,1 κ(Θv )

Ik>0 with j = ∞ q−1
q2

II with j = 0 q−1
q3

III with j = 1728 q−1
q4

IV with j = 0 q−1
q5

I∗k>0 with j = ∞ q−1
q7

I∗0 with j ̸= 0, 1728

I∗0 with j = 0, 1728 q−1
q6

IV∗ with j = 0 q−1
q8

III∗ with j = 1728 q−1
q9

II∗ with j = 0 q−1
q10

We could specialize to the K = Fq(t) case where we know the

exact values of |C (Fq)| ζC (10)ζC (2)
by |P1(Fq)| = q + 1 and

ζP1
Fq
(s) = 1/(1− q−s)(1− q · q−s).
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