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Rational Points on Projective Varieties over QQ
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Figure 1: Rational points on x? 4 y? = 1 over Q - Pythagorean Triples

2/46



Why should we be happy?

1. Geometry is enlightening and the quadratic formula is
awesome as we have found / parametrized all rational points

2 . .
(x,y) = (:zj, tzzf_l) € Q? on the unit circle over Q

2. Integral points [X : Y : Z] = [a®> — b? : 2ab : a® + b?] € Z3 on
C == V(X2 + Y2 — Z2) correspond to “Pythagorean Triples”

3. Height of a rational number a/b with ged(a, b) =1 is
ht(a/b) = max(|a|, |b|). Therefore, ht(4/10) =5 and
ht(1000000001,/1000000000) = 1000000001 # 1. Bigger
height allows more possibilities for numerator or denominator
thus more rational points that are aritmetically complex.

4. On projective varieties, the integral and the rational points
coincide i.e., X(Q) = X(Z). Bear in mind gcd(a, b) = 1.
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Why should we be unhappy?

1. If we don't have a rational point to begin the process then we
cannot apply quadratic formula. For example, x> + y? = 3, it
turns out X(Q) = 0. We need arithmetic (Fermat's Method
of Infinite Descent) to prove this.

2. Take x* + y* =1 then we have “Fermat’s Last Theorem”
regarding x” + y" = 1 with n = 4. By Wiles-Taylor, we know
it has only 4 rational points X(Q) = {(£1,0), (0,+1)}.
Recalling Mordell-Faltings, we know it had X(Q) < oo

3. Take y? = x3 + Ax + B this is 1 polynomial in 2 variables of
degree 3 (the Weierstrass cubic for an elliptic curve over Q).
What are E(Q)? Shockingly, we still cannot answer this.

4. Actually, we know there is at least 1 rational point, the point
atoco=[0:1:0]for E: V(Y?2Z - X3 - AXZ? — BZ3)
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Degree of countable infinity, the Rank

1. By Mordell-Weil, the set E(Q) of rational points on E/Q has
a finitely-generated abelian group structure E(Q) =Z"® T
with algebraic rank r € Z>q and torsion subgroup T

2. The rank r of E(Q) is not well understood.

2.1 An algorithm that is guaranteed to correctly compute r?

2.2 Which values of r can occur? How often do they occur?

2.3 Is there an upper limit, or can r be arbitrarily large?

3. When r is small, computational methods exist but when r is
large, often the best we can do is a lower bound; we now
know, there is an E/Q with r > 29 by Elkies-Klagsbrun
(2024). Assuming GRH we can show that r = 29.

5/46



Rank 29 x  +

C @ 2% https:/jweb.math.pmf.unizg.hr/~duje/tors/z1.html

Trivial torsion group, rank > 29

Elkies - Klagsbrun (2024)

y2 + xy = x3 - 27006183241630922218434652145297453784768054621836357954737385x
+ 55258058551342376475736699591118191821521067032535079608372404779149413277716173425636721497

Independent points of infinite order:

Py = [2891195474228537189458255536634, 1159930748096124706459835910727318679593425283]
= [3402542165322127811451484642234, 1661508223164691055862657623730465560755290883]
= [4298760026558467240422107564794, 4313142249890236204790986787384907722927474563]
Py = [3728756667770947009884455714554, 2530180219584734091116528693531660545660397443]
Ps = [5991744132052078230511185130234, 10418901628842034362301273055728300669218858883]
= [3236493534632768520540227223034, 1324626796262167243658687198416201825373745283]

= [78226686134991174: 4, 69039421006 9654125516779999512554883]
Pg = [11492605643548859374635605140234, 35536316911450952155461624238308456029618940883]
Py = [- 51433B3362384229804906088115566 7622356511107936864120352355674305650222368483]

4 435002, 65844681, 1
[ 979565018904259630752529749766 8987348422104537534955705438714038633832170883]
[5184894285212178249566461261834, 7390536788003150201273204464695859875505480483]
[-4469171023687146502067179612166, 9310658592541455934133221137392081403414455653]
[ 970234, 21 127898883]
[16151744576785317732533993162234 6190888209247233894E5l9909276455831463747210883]
[3573684355943766387962362869754, 2094467155115749424853047283659077805560259203]
P17 = [-759376049938858166436491644166, 8679171135458197195914024161800061810952119683]

Pig = [-5328058719935886182106003119366, 6920588147379497633202935557367499676224350083]
P1g = [538026847489! . 8 118297303424395856037443]
Py = [17069233487 203248484, 675836 95299213867443505411

Py = [5215432542403430758248050783794, 7501515746204716855921710958364078294243814643]

Py, = [2838942178046024039763692432122, 1212346280964590308944175800544505700108208003]

Py3 = [243146882395382015946366404808154/81, 811625272160726332199288136187427505366582108107/729]
Py = [2558229016839511149831260080762, 1706598395830079994387505244133382709649637123]
Pys = [23612539: 10977556672634, 21! 43552448798851089310708763298766083]
Py = [2678312077644931683114439906234, 14627223610Z079643674l527433473386115047618883]
Py7 = [33793970849272309: 49 7551
Pyg [3632A0773087099§91791249135551A, 2255654937037788521975ISEHE11B5619053396712963]
Pyo = [2428778263277521959543043930234, 10603606161737305: 4410883]

Previous record with rank > 28
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Demography of Elliptic Curves £/Q

Trying to find / parametrize all the rational points on a given E/Q
is a dead-end. Thus we would like to think about the Question of
Distribution and Proportion over all E/Q

Naive height for E : y? = x3 4+ Ax + B with no p*/A and p°®|B
(minimal Weierstrass model) is ht(E) := max(4|A|3, 27B2).

Conjecture (Minimality + Parity; Goldfeld and Katz-Sarnak)

Over any number field, 50% of all elliptic curves (when ordered by
height) have Mordell-Weil rank r = 0 and the other 50% have
Mordell-Weil rank r = 1. Moreover, higher Mordell-Weil ranks

r > 2 constitute 0% of all elliptic curves, even though there may
exist infinitely many such elliptic curves. Therefore, a
suitably-defined average rank would be %

What does this really mean? To talk about Average, we need the
“Total number of elliptic curves over (Q up to isomorphism”.
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Deligne—Mumford stack ﬂm of stable elliptic curves

Fine moduli stack Mj 1 parametrizes isomorphism classes [E] of
stable elliptic curves with the coarse moduli space My ; = P!
parametrizing the j-invariant j([E]) = 1728 - 4a3/(4a3 + 27a2)

Vﬂen the characteristic of the field k is not equal to 2 or 3,
(Mi1.1)k = [(Spec k[aa, ag] — (0,0))/Gpm] =: Pk(4,6) through the
short Weierstrass equation: y? = x3 + azx + ag

Stabilizers are the orbifold points [1: 0] & [0 : 1] with pa & e
respectively and the generic stacky points such as [1 : 1] with uo

The fine moduli stack M 1 comes equipped with the universal

family p : €11 — M1 of stable elliptic curves.
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Grothendieck ring Ky(Stcky) of k-algebraic stacks

Ekedahl in 2009 introduced the Grothendieck ring Ko(Stcky) of
algebraic stacks extending the classical Grothendieck ring
Ko(Vary) of varieties first defined by Grothendieck in 1964.

Definition

Fix a field k. Then the Grothendieck ring Ko(Stcky) of algebraic

stacks of finite type over k all of whose stabilizer group schemes

are affine is an abelian group generated by isomorphism classes of
algebraic stacks {X'} modulo relations:

> {X}={Z}+{X\ Z} for Z C X a closed substack,
> {&} = {X x A"} for £ a vector bundle of rank n on X.

Multiplication on Kp(Stcky) is induced by {X}{YV} = {X x V}.
A distinguished element IL := {A'} is called the Lefschetz motive.

(P} =L+1, {PM}=LN4+...+1, {Gp}=L-1, {E} =7
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Universal for Additive & Multiplicative Invariants

For any ring R and any function 7 : Stcky — R satisfying relations
1) #(X) = ©(Y) whenever X =),

2) 0(X) =o(U) + (X \U) for U — X an open immersion,

2) p(X x V) =(X)-5(Y),

there is a unique ring homomorphism v : Ky(Stcky) — R

J

Steky

{} o
S,

v

Such homomorphism v are called motivic measures.

.. When k =T, the point counting measure {X'} — #4(X) is a

well-defined ring homomorphism #, : Ko(Stckr,) — Q giving the
weighted point count #4(X’) of X" over F,.

PV(F) =gV +... 41, g+1-2/G<|E(F)| < qg+1+2,/7
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Arithmetic of Algebraic Stacks over Finite Fields

The weighted point count of X over Fg is defined as a sum:

#a(X) =D cx )~ |Aut(x)‘ where X (Fy)/ ~ is the set of
[Fg—isomorphism classes of IF,—points of X.

What we really need is the unweighted point count |X(Fq)/ ~ |.
But this is immune to the Grothendieck-Lefschetz trace formula.

We clarify the arithmetic role of the inertia stack Z(X') of an
algebraic stack X" over Fq which parameterizes pairs (x, Aut(x)).

Theorem (Changho Han-JP)

Let & be an algebraic stack over Fg of finite type with affine
diagonal. Then,

[X(Fq)/ ~ | = #4(Z(X))

Thus the weighted point count #4(Z(X')) of the inertia stack
Z(X) is the unweighted point count |X(Fg)/ ~ | of X over F,.
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How many elliptic curves over k = [, upto isom?

The inertia stack ZMj 1 parametrizes [E] and automorphism
groups ([E], Aut[E]). To keep track of the primitive roots of unity

1 if x divides g — 1,

contained in Fg, define function §(x) = }
0 otherwise.

Grothendieck class in Ko(Stckg) with char(k) # 2,3,
{IMyi 1} =2-(L+1)+2-6(4)+4-6(6)
Weighted point count over Fy with char(Fgq) # 2,3,
#q(IM11) =2-(q+1)+2-6(4)+4-0(6)
Exact number of F,—isomorphism classes with char(Fg) # 2,3,

(Mi11(Fg)/ ~|=2-(q+1)+2-6(4)+4-6(6)
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Elliptic surfaces /k = Families of elliptic curves /K

The study of fibrations of algebraic curves lies at the heart of
the Enriques-Kodaira classification of algebraic surfaces.

_—— T (P)
P - —
s
(0)
o T

. pt

We call an algebraic surface S to be an elliptic surface, if it
admits an elliptic fibration f : S — C which is a flat proper
morphism f from a nonsingular surface S to a nonsingular curve C,
such that a generic fiber is a smooth curve of genus 1.

While this is the most general setup, it is natural to work with the

case when the base curve is the smooth projective line P! and

there exists a section O : P! < S coming from the identity points

of the elliptic fibres and not passing through the singular points. ;4



Moduli stack of stable elliptic fibrations

Thus, a stable elliptic fibration g : Y — P! is induced by a
morphism ¢ : P — Mj 1 and vice versa.

X A Y = 90’;(?1’1) %2171

Pl ——P'— " M,
X is the non-singular semistable elliptic surface; Y is the stable
elliptic fibration; v : X — Y is the minimal resolution.

The moduli stack L2, of stable elliptic fibrations over the P! with
12n nodal singular fibers and a marked section is the Hom stack
Hom,(P*, My.1) where 07071, ,(1) = Opi(n) .

A morphism r : Pl — Ml,l consists of global sections
(homogeneous polynomials in [u: v]) ¢ = (as(u, v), ae(u, v))
where deg(as) = 4n and deg(ag) = 6n (!) and Res(as, ag) # 0.
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Elliptic fibrations over a function field

Let K be the function field of a smooth, projective, absolutely
irreducible curve C over the field of constants k. An elliptic curve
over K is a smooth, projective, absolutely irreducible curve of
genus 1 over K equipped with a K-rational point O (the origin).
Y2Z + et XYZ 4+ a3YZ? = X3 + apX%Z + ay XZ? + ag Z°

Definition (Constant, Isotrivial and Non-isotrivial)
Let E be an elliptic curve over K = k(C).

» We say E is constant if there is an elliptic curve Ey defined
over k such that E = Ey x, K. Equivalently, E is constant if
it can be defined by a Weierstrass cubic where the a; € k.

» We say E is isotrivial if there exists a finite extension K’ of K
such that E becomes constant over K’. A constant curve is
isotrivial. Equivalently, E is isotrivial if and only if j(E) € k.

» We say E is non-isotrivial if it is not isotrivial. We say E is
non-constant if it is not constant.
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Isotrivial Rational Elliptic Surface of height n =1
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Tate’s Algorithm via Twisted Morphisms

Theorem (Dori Bejleri—-JP—Matthew Satriano; April 2024)

If char(K) # 2,3. Then the twisting condition (r,a) and the order
of vanishing of j at j = oo determine the Kodaira fiber type, and
(r,a) is in turn determined by m = min{3v(as),2v(as)}.

v : (v(as), v(a6)) | Reduction type withj € M1y | T : (r,a)
(>1,1) IT with j = 0 (6,1)
(1,>2) IIT with j = 1728 (4,1)
(>2,2) IV with j = 0 (3,1)

(2,3) T} with j = 00 (2,1)
I with j # 0,1728

(>3,3) Ig with j =0 (2,1)

(2,> 4) 15 with j = 1728 (2,1)

(> 3,4) IV with j = 0 (3,2)

(3,> 5) I with j = 1728 (4,3)

(> 4,5) IT* with j = 0 (6,5)
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Geometric Interpretation of Tate’s Algorithm

7[
Weierstrass contraction O resolution
X X’ X h p
N
v -
C——— My,
7 -
p § -
- -
c c = / ! M
1,1

Here f is a Weierstrass model, 1) is the associated weighted linear
series viewed as a rational map to ﬂl,l, p is a twisted morphism
from the universal tuning stack C which induces a stable stack-like
model h: )Y — C where g : Y — C is the twisted model via coarse
moduli maps, f is a resolution of Y, and f’ is the relative minimal

model obtained by contracting relative (—1)-curves.
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The Sharp Enumeration over Rational Function Field

Define height of discriminant A over Fy(t) as ht(A) = gde4
> Elliptic case: Deg(A) = 12n = ht(A) = q'" for n € Z>o

We consider the counting function N'(Fq(t), B) ==

‘{Minimal elliptic curves over IP’Ilpq with 0 < ht(A) < BH

Theorem (Dori Bejleri-JP—Matthew Satriano; April 2024)

1 if x divid -1
Let char(F4) > 3 and 6(x) := "X IV_I ea ", then
0 otherwise.

N(Fy(t), B) =2 <q —

5 3

-1\ i 9> -1\ i3
+6(6)-4<q5_q4>8/ +5(4)-2<q3_q2>3/
+6(6)-440(4) -2

) B5/6 281/6
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Origins of Each Terms in NV (F,(t), B)

o_ . .
> 2 (9=L) B%® comes from non-constant s, twist families
q _q . . . . . . . . .
that are either non-isotrivial or isotrivial with j # oo

» —2B/% comes from non-constant po twist families of
generically singular isotrivial elliptic curves with j = oo

5

> §(6)-4 (ﬁ) B'/2 comes from non-constant fig twist

families of isotrivial elliptic curves with j =0

> 5(4)-2 (%) B/3 comes from non-constant ji4 twist
families of isotrivial elliptic curves with j = 1728

» §(6) - 4 comes from constant elliptic curves with j =0

» §(4) - 2 comes from constant elliptic curves with j = 1728
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Height Moduli Space on Cyclotomic Stacks

There is a height moduli stack M (X, £) parametrizing all
rational points on general proper polarized cyclotomic stacks of
stacky height n and that the spaces of twisted maps yield a
stratification of M, (X, L) corresponding to fixing the local
contributions to the stacky height. The fact that M,(X, L) is of
finite type is a geometric incarnation of the Northcott property.

Theorem (Dori Bejleri-JP—Matthew Satriano; April 2024)

Let (X, L) be a proper polarized cyclotomic stack over a perfect
field k. Fix a smooth projective curve C/k with function field
K = k(C) and n,d € Q>o.

1. There exists a separated Deligne-Mumford stack M, c(X, L)
of finite type over k with a quasi-projective coarse space and a
canonical bijection of k-points

M (X, L)(k) = {P € X(K) | htc(P) = n}.
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1. There is a finite locally closed stratification

| | #G.c(X, £)/Sr = Mpc(X, L)
rd

where 7—[ c are moduli spaces of twisted maps and the union
runs over all possible admissible local conditions

N={n,at,. .., {rs,as})

and degrees d for a twisted map to (X, £) satisfying

S
a
n:d—i-Z?'
i=1 '

and Sr is a subgroup of the symmetric group on s letters that
permutes the stacky points of the twisted map.

2. Under the bijection in part (1), each k-point of
H! (X, L)/Sr corresponds to a K-point P with the stable
heiéht and local contributions given by

htst(P) = d {5,-:5:"} :
i) i=1
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Specializing to the canonical case of M;; = P(4,6)

1.

2.

The Hodge line bundle £ of My 1 is v = O(1) on P(4,6)

An elliptic curve E/K is a rational point P € Mj 1(K) which
in turn corresponds to a weighted linear series on K = k(C)
of height n consisting of Weierstrass coefficients

aq € H°(C,O(4n)) and ag € H°(C,O(6n))

. The orders of vanishing at a point can be encoded in a vector

v = (vx(aa),vx(ae)) which corresponds to a certain twisting
data I' = (r, a) of universal tuning stack, a twisted curve C

The spaces W/ e and Hd ¢ can be identified with moduli of
certain canomcal models of elliptic surfaces with a specified
fiber of additive bad reduction and the isomorphism between
the two via Tate's algorithm can be understood in the context
of the minimal model program.
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Theorem (Dori Bejleri-JP—Matthew Satriano; April 2024)
{win(P()) } = (PN - L) + LNFL{PIA-N-2)
{ rr]r;ré(fp(;\'))} _ L(n—2)|X|+N+2(L\X|—1 _ 1){P\X|—1}
Take |X| =10 and N =1 as My ; = P(4,6) over Z[1/6].
1. When n =1, X is a Rational elliptic surface.
{wmin } =14 L0 4 LTS+ L7 LS+ LS+L4+L3—L

2. When n =2, X is algebraic K3 surface with elliptic fibration
(i.e., Projective elliptic K3 surface with moduli dim. 18).

{ovguin} 21,120,129, 118,107,126, 115, 14,113 1111019 18 1716 ;5 14 13
—L(L2— 1)(1L18+JL17+21L16+21L15+31L14+31L13+4JL12+41L11 51101419 + 4184317 4316 4215 1214 413412 )
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Projective Elliptic K3 Surface of height n =2

y2=x3+ag(u:v)x+ag(u:v)

Weierstrass data for elliptic fibration on algebraic K3 surface,

ag(u:v) = —3u*v* degree 8 =4 x 2,
ag(u:v) = uPvd(u? + v?), degree 12 =6 x 2.

Then we have A = 4a} + 2722 and j = 1728 - 4a3 /A

. 10,,10 A122
joo=Es _(u1z35)32‘(*z+vv)2, degree 4! NOT 24.

{A = 27ul%1%u — v)?(u + v)?, degree 24 = 12 x 2,

The j-map j : P! — Wl,l =~ Pl is always a morphism but lost the
valuation data crucial for Tate's algorithm to find out what are
(additive) singular fibers at [0 : 1] for t =0 and [1: 0] for t = oo.
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Motivic Analytic Number Theory Praxis

Moduli of minimal stable E/F(t) is £12, = Hom,(P!, M 1)

Theorem (Changho Han-JP)
Grothendieck class in Ko(Stckg) with char(k) # 2,3,

[10n+1 _ p 10n—1

Fq) # 2,3,

10n—1
q

{L12n} =
Weighted point count over F with char(
#a(L12n) = qlOn 1 —
Exact number of Fg—isomorphism classes with char(Fg) # 2,3,

|L120(Fq)/ ~ | = #q(TL12n) =2 ("0 — 'O 1)

{/oquJ
12
ZeoB) = X Lran(Fa)/ ~ | =2 G- (53 1)

n=1
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Motivic Stability and Arithmetic Distributions

It is natural to ask how many elliptic fibrations realize specific
configurations of singular fibers out of all possible elliptic
fibrations. The “size” of the corresponding moduli spaces can be
quantified through point counts over finite fields and their ratios.

Theorem (Dori Bejleri-JP—Matthew Satriano; April 2024)
Let n € Z>5 and char(k) # 2, 3. Consider following moduli stacks
> WMt of minimal elliptic fibrations over P} of height n

> WO of minimal elliptic fibrations over Pi of height n having
exactly one specified singular fiber of Kodaira type © at a
(varying) degree-one place and semistable everywhere else.

Their respective motives in Grothendieck ring Ko(Stcky) satisfy

{2} )

.
{W,’{““}_Lls + L15 + 2114 + 2113 + 3012 4 3111 4+ 4110 + 419 + 5L8 + 4L7 + 4L6 + 3L5 + 3L4 + 213 + 202 + L + 1
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where

r(L) is a polynomial of L := {A}} depending only on ©

Reduction type © with j € My r(L)
k>0 With j = 0o L6
II with j =0 L
IIT with j = 1728 L4
IV with j =0 L3
T With j = o0 L2 — 1
I with j # 0,1728
I with j = 0,1728 L1
IV* with j =0 L0
IIT* with j = 1728 L°
IT* with j =0 L8
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Motives of Moduli Stacks of Elliptic Surfaces

Theorem (Dori Bejleri-JP—Matthew Satriano)

Let char(k) # 2,3. The motives (modulo {PGL2}) of moduli

stacks Wm(?n ., of minimal Weierstrass fibrations with a single

Kodaira fiber © and at worst multiplicative reduction elsewhere is

Reduction type © with j € My1 | || | {W min, O 1 € Ko(Stckg)
k>0 With j = 00 0 [10n—2
IT with j =0 2 103
IIT with j = 1728 3 L1034
IV with j =0 4 L10n=5
IZ>O Wlth_j — 00 5 LlOn—G _ LlOn—7
I with j # 0,1728
I with j = 0,1728 6 L10n=7
IV* with j =0 7 108
IIT* with j = 1728 8 L10n—9
IT* with j =0 9 . 10n—10
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Precise proportions of £/K motivated by NT

Theorem (Generic Torsion Freeness; Phillips)

The set of torsion-free elliptic curves over global function fields has
density 1. i.e., ‘Most elliptic curves over K are torsion free'.

Theorem (Boundedness; Tate-Shafarevich & Ulmer)

The ranks of non-constant elliptic curves over Fq(t) are
unbounded (in both the isotrivial and the non-isotrivial cases).
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Ulmer’s non-isotrivial elliptic curve of infinite rank

1. Start with y? 4+ xy = x3 — t9, then complete the square via

y =y' — 5 and then complete the cubic via x = x' — 5. We

need char(k) # 2,3 to get to the short Weierstrass form

2. We get y? = x3 48x + 864 . Coefficients should be
|ntegra| thus we take A =2-3 to muItlpIy M to — L g and A6
to +ger — 9.

3. We arrive at y? = x3 — 27x 4+ 54 — 26 .36 . t< thus
— 5 i geg — t9 =[-27:54—-20.3%.¢9].

4. Remember the isomorphism, for any A € G,
[y2:x3—|—Ax—|—B] = [y2:x3—|—)\4-Ax—|—)\6-B]

via x = A2 -x and y — A3 . y by the Weighted
homogeneous coordinate of P(4,6).
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® ® R Magma Calculator X+

< C M https://magma.maths.usyd.edu.au/calc/ Q

M ! GM ! About Calculator Ordering FAQ Download Documentation

COMPUTER + ALGEBRA

Enter your code in the box below. Click on "Submit" to have it evaluated by Magma.

KK<t> := FunctionField(GF(4007));
E := EllipticCurve([-27, 54 - 2"6x3°6xt~11]);

E;
&+BadPlaces(E);
LocalInformation(E);

Submit

Elliptic Curve defined by y*2 = x"3 + 3980%x + (1428xt*11 + 54) over Univariate
rational function field over GF(4007)

711 + 1549

[ <(t"5 + 3335%t"4 + 2186%t"3 + 488kt"2 + 2393t + 906), 1, 1, 1, I1, false>,
<(175 + 33374t™4 + 2186%t"3 + 488xt"2 + 3369xt + 906), 1, 1, 1, I1, false>,
<(t), 11, 1, 11, 111, true>, <(1/t), 2, 2, 1, II, true>, <(t +1342), 1, 1, 1,
I1, false> ]
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1. The corresponding elliptic surface has a fiber of Kodaira type
l4 at zero (at t = 0), while the fiber at infinity (at 1/t = 0) is
given by the congruence class d of d modulo 6 : (d,©)

(0, To) (I, I1¥) (2, IV*) (3, 1}) (4, IV) (5, 1I)

2. Qutside char 2, 3, there are d fibres of type /1 at the zeroes of
432t — 1 (some of which may be merged if char(k)|d).

The aim of this paper is to produce elliptic curves over K = Fp(t) which
are nonisotrivial (j € F,) and which have arbitrarily large rank.

THEOREM 1.5.  Let p be an arbitrary prime number, F, the field of p
elements, and Fy(t) the rational function field in one variable over Fp. Let E
be the elliptic curve defined over K = Fp(t) by the Weierstrass equation

y2 +zy = 23— td

where d = p™ + 1 and n is a positive integer. Then j(E) & Fp, the conjecture

of Birch and Swinnerton-Dyer holds for E over K, and the rank of E(K) 1is

at least (p" — 1)/2n.
By the Shioda-Tate formula and assuming maximal Picard number
of p = 10n for Faltings height n (while by = 12n — 2), we know
that r = 10n — rk(T) where T is the trivial lattice. Ulmer's proof
shows that as the height of Ulmer's curve goes up as
n=1+ L%J — 00, the algebraic/analytic rank r goes up to co.
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Sketch of Ulmer’s proof

1.

Construct an elliptic surface S — P! over F, with generic
fiber E:y? +xy=x3—tdford=p"+1and necZ,.

Construct (and carefully study) a birational isomorphism
between S and F,/G, the quotient of a Fermat surface i.e.
V(x4 4 y9 4+ 29 + w9) C P3 (d = 4 then it is K3 surface).

Using the fact that the Tate conjecture for surfaces is known

for Fermat surfaces, one can deduce the Tate conjecture for S.

Use the fact that the Tate conjecture for S implies the Birch
and Swinnerton-Dyer conjecture for E. Thus the ranks of the
elliptic curves in the family all equal their analytic ranks.

The analytic ranks can be computed by relating the
L-function of E to the zeta function of S, which can be
related to the zeta function of Fy, which is known by Gauss
sum computation of Weil. From this one is able to compute
the analytic rank which is unbounded from below.

35/46



Precise proportions of £/K motivated by NT

We consider the counting function N7 .(Fq(t), B) =
[{Minimal E/Fq(t) with algebraic rank r, torsion T and ht(A) < B}

Quantitative Rank Distribution Conjecture over K = F(t)

9 5
N (Ey (1), B) = (q" — ) B 1 o(B),

9 5
NEL(E (1), B) = <q" = ) B 1 o(BY),

N}22(Iﬁ‘q(t), B) = o(BE), where all o are little-o.

T |E(K)| =1 and E(K) = Z each corresponds to 50% of all
elliptic curves over K ordered by discriminant height having equal

main leading term B%/6 with identical leading coefficient (qq :‘717>.

Furthermore, the exact counting formulas for N7=9(F,(t), B) and
NFT=ZL(Fq4(t), B) do not coincide since the respective counting

functions have distinct lower-order main terms. 3646



General Global Function Field Case

Theorem (Dori Bejleri—Tristan Phillips—Matthew
Satriano—JP; April 2025)

Let n € Z>5 and char(k) # 2, 3. Consider following moduli stacks
> WWmin of minimal elliptic fibrations over Cy of height n

> WS of minimal elliptic fibrations over Cy of height n having
exactly one specified singular fiber of Kodaira type © at a
(varying) degree-one place and semistable everywhere else.

Their respective weighted point counts satisfy asymptotically

im NOEL(C). B)
Borse N(Fo(C), B)

2
—1CE SR T (©))

where k(©,) is an explicit ratio in g depending only on type ©
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Reduction type © with j € M11 | k(©,)
Tx>o with j = oo qq—_zl
IT with j =0 qq—gl
ITI with j = 1728 ot
IV with j =0 qq—;l
I} With j = 0o o
I with j # 0,1728

I with j = 0,1728 qq——ﬁl
IV* with j =0 o
IIT* with j = 1728 qq—;l
IT* with j =0 iy

We could specialize to the K = F(t) case where we know the

exact values of |C(]Fq)|icc((120)) by |PY(F,)| = g + 1 and

G () =1/1-q)1~q-q7°).
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Accessing Cruder Level of Topology via Motives

A priori, point counts over [F; shouldn’t know any topology.

In Ai, cusp singular fiber II and affine line A! have the same point
counts (motives) i.e. {Il = V(y? =x3)} =L = {A! = V(x)} but
they have very different topology.

Same motive since we have a stratification of II = X7 U X5 where
X1 = II — {pt} and X = {pt} and Al = Y; U Y5 where
Yi = Al — {pt} and Y, = {pt}.

Indeed, X; = Y1 (smooth complement) and X> = Y, (a singular
point is just like a smooth point as Spec(k)) i.e. they are
cut-and-paste equivalent and naturally {II} = {Al} =1L

Same for nodal cubic {I; = V(y2 =x3+ X2)} =L
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Different topology since, II and I; have arithmetic genus 1 (they
are singular elliptic curves) whereas A! has arithmetic genus 0

Singular point on II is the tip of a cone over the trefoil knot
whereas singular point on I; is the tip of a cone over the Hopf link.
(Every isolated singularity of a complex curve in a complex surface
can be described topologically as the tip of a cone on a link)

8.7. Trefoil knot, and cusp fiber

Miracle: When a variety is smooth projective then its point count
over [F; knows topology via Frobenius weights and étale purity (the
finite field analogue of RH) through the Grothendieck-Lefschetz
trace formula under the Weil conjecture framework.
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Thinking the other way around, this suggests that we can ignore
finer topology if we are just interested in the arithmetic invariant.

Corollary (Dori Bejleri-JP—Matthew Satriano; April 2024)
The disjoint union of 1, ¢

|_|W’”’” v1%7><@v )

is an isomorphism after stratifying the source and target.

If we want to point count X one way to do it is to find a
stratification of Y (where we know {X} = {Y} even though

X 2 Y) into disjoint union of locally-closed subvarieties where we
can compute its motivic classes and add them up. That is, utilize
cut-and-paste property by stratifying source X and target Y.

Grothendieck ring Ko(Stcky) of k-algebraic stacks allows us to this
procedure motivically (free of particular choice of ground field k

and also free of choice of additive invariant on Vary or Stcky)
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Motivic Height Zeta Function as Generating Series

Definition
A A-weighted linear series (L, sp, ..., sn) is minimal if for each
indeterminacy point x € C, there exists an j such that v,(s;) < A;.

Definition
The motivic height zeta function of P(Xo, ..., An) is the formal
power series

Zy(t) ==Y _{Wrm t" € Ko(Stek)[t]

n>0

where WTn is the space of minimal weighted linear series on P! of
height n. We also define the variant

TZi(t) = > {IWI"} t" € Ko(Stek)[1]
n>0
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Stratification on Ambient Projective Stacks
Minimality defect e measures the degree of failure of a weighted
linear series to be minimal (not a rational point of height n).

Definition

Let i be the normalized base profile. We can divide each part y;
by x to obtain p; = kq; + ri. We define g(u) and r(u) to be the
partitions with parts g; and r; respectively.

The minimality defect of 1 is the size of the quotient e = |g(1)].

Corollary (Dori Bejleri-JP—Matthew Satriano; April 2024)
The disjoint union of 1, ¢

|_|W’”’” v1%7><@v >

is an isomorphism after stratifying the source and target.
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. We denote the usual motivic zeta function of P! by

1
2(8) =) _{Sym Py = gy

. We stratify by minimality defect e to obtain an equality

N n
{79 (@ v,$f> } =Y (Wl {Sym® P}
i=0 e=0

which implies

N
Z{P <@ VnA")}f":Zx(f)'Z(f) (1)
i=0

n>0
. Homogeneous polynomials live in compact ambient stack!

N N N+1 f|X|—N—2
A\ Lo {PV}+ LNFHPA-N=234
Z{P (@V >}t (-0 -1y

n>0

44/46



Rationality of Motivic Height Zeta Function

Fix weights X = (Ao, ..., Ay) and let [X]: = Z,,'V:o Ai. Suppose for
simplicity that k contains all lem = lem(Ag, ..., Ay) roots of unity.
Theorem (Dori Bejleri-JP—Matthew Satriano; April 2024)

For k, X as above and C = ]P’,l(, consider W,’,"”’ and its inertia stack
IWMin_ We have the following formulas over Ko(Stcky).

Z{Wgnin}tn _ 1-— Lﬂt ({PN} + LN+1{P\X|—N—2}t)
=0 1— LAt
miny 4n 1Lt N Ng-+1 ol Ng|—Ng—2
S{pwrne = Y 74({19 6) 4 LNt 1{plhel—Ne }t)
n= ge,ulcm(k)

where g runs over the lcm roots of unity and Xg is a subset of X of
size Ng + 1 depending explicitly on the order of g.
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The End.

Thank you for listening!
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