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Rational Points on Projective Varieties over Q

Figure 1: Rational points on x2 + y2 = 1 over Q - Pythagorean Triples



Why should we be happy?

1. Geometry is enlightening and the quadratic formula is
awesome as we have found / parametrized all rational points

(x , y) =
(
t2−1
t2+1

, 2t
t2+1

)
∈ Q2 on the unit circle over Q

2. Integral points [X : Y : Z ] = [a2 − b2 : 2ab : a2 + b2] ∈ Z3 on
C := V (X 2 +Y 2 −Z 2) correspond to “Pythagorean Triples”

3. Height of a rational number a/b with gcd(a, b) = 1 is
ht(a/b) = max(|a|, |b|). Therefore, ht(4/10) = 5 and
ht(1000000001/1000000000) = 1000000001 ̸= 1. Bigger
height allows more possibilities for numerator or denominator
thus more rational points that are arithmetically complex.

4. On projective varieties, the integral and the rational points
coincide i.e., X (Q) = X (Z). Bear in mind gcd(a, b) = 1.



Why should we be unhappy?

1. If we don’t have a rational point to begin the process then we
cannot apply quadratic formula. For example, x2 + y2 = 3, it
turns out X (Q) = ∅. We need arithmetic (Fermat’s Method
of Infinite Descent) to prove this.

2. Take x4 + y4 = 1 then we have “Fermat’s Last Theorem”
regarding xn + yn = 1 with n = 4. By Wiles-Taylor, we know
it has only 4 rational points X (Q) = {(±1, 0), (0,±1)}.
Recalling Mordell-Faltings, we know it had X (Q) <∞

3. Take y2 = x3 + Ax + B this is 1 polynomial in 2 variables of
degree 3 (the Weierstrass cubic for an elliptic curve over Q).
What are E (Q)? Shockingly, we still cannot answer this.

4. Actually, we know there is at least 1 rational point, the point
at ∞ = [0 : 1 : 0] for E : V (Y 2Z − X 3 − AXZ 2 − BZ 3)



Degree of Countable Infinity, the Rank

1. By Mordell-Weil, the set E (Q) of rational points on E/Q has
a finitely-generated abelian group structure E (Q) = Zr ⊕ T
with algebraic rank r ∈ Z≥0 and torsion subgroup T

2. The rank r of E (Q) is not well understood.

2.1 An algorithm that is guaranteed to correctly compute r?

2.2 Which values of r can occur? How often do they occur?

2.3 Is there an upper limit? Can r be arbitrarily large?

3. When r is small, computational methods exist but when r is
large, often the best we can do is a lower bound; we now
know, there is an E/Q with r ≥ 29 by Elkies-Klagsbrun
(2024). Assuming GRH we can show that r = 29.





Demography of Elliptic Curves E/Q

We would like to think about
the Question of Distribution and Proportion over all E/Q

Naive height for E : y2 = x3 + Ax + B with no p4|A and p6|B
(minimal Weierstrass model) is ht(E ) := max(4|A|3, 27B2).

Conjecture (Minimality + Parity; Goldfeld and Katz-Sarnak)

Over any number field, 50% of all elliptic curves (when ordered by
height) have Mordell-Weil rank r = 0 and the other 50% have
Mordell-Weil rank r = 1. Moreover, higher Mordell-Weil ranks
r ≥ 2 constitute 0% of all elliptic curves, even though there may
exist infinitely many such elliptic curves. Therefore, a
suitably-defined average rank would be 1

2 .

What does this really mean? To talk about Average, we need the
“Total number of elliptic curves over Q up to isomorphism”.



Elliptic surfaces /k = Families of elliptic curves /K

The study of fibrations of algebraic curves lies at the heart of
the Enriques-Kodaira classification of algebraic surfaces.

We call an algebraic surface S to be an elliptic surface, if it
admits an elliptic fibration f : S → C which is a flat proper
morphism f from a nonsingular surface S to a nonsingular curve C ,
such that a generic fiber is a smooth curve of genus 1.

While this is the most general setup, it is natural to work with the
case when the base curve is the smooth projective line P1 and
there exists a section O : P1 ↪→ S coming from the identity points
of the elliptic fibres and not passing through the singular points.



Moduli stack of stable elliptic fibrations

Thus, a stable elliptic fibration g : Y → P1 is induced by a
morphism φf : P1 → M1,1 and vice versa.

X

f
��

ν // Y = φ∗
f (E1,1) //

g

��

E1,1

p

��

P1 P1 φf //M1,1

X is the non-singular semistable elliptic surface; Y is the stable
elliptic fibration; ν : X → Y is the minimal resolution.

The moduli stack L12n of stable elliptic fibrations over the P1 with
12n nodal singular fibers and a marked section is the Hom stack
Homn(P1,M1,1) where φ

∗
fOM1,1

(1) ∼= OP1(n) .

A morphism φf : P1 → M1,1 consists of global sections
(homogeneous polynomials in [u : v ]) φf = (a4(u, v), a6(u, v))
where deg(a4) = 4n and deg(a6) = 6n (!) and Res(a4, a6) ̸= 0.



Isotrivial Rational Elliptic Surface of height n = 1



Arithmetic of Algebraic Stacks over Finite Fields

The weighted point count of X over Fq is defined as a sum:
#q(X ) :=

∑
x∈X (Fq)/∼

1
|Aut(x)| where X (Fq)/ ∼ is the set of

Fq–isomorphism classes of Fq–points of X .

What we really need is the unweighted point count |X (Fq)/ ∼ |.
But this is immune to the Grothendieck-Lefschetz trace formula.

We clarify the arithmetic role of the inertia stack I(X ) of an
algebraic stack X over Fq which parameterizes pairs (x ,Aut(x)).

Theorem (Changho Han–JP)

Let X be an algebraic stack over Fq of finite type with
quasi-separated finite type diagonal. Then,

|X (Fq)/ ∼ | = #q(I(X ))

Thus the weighted point count #q(I(X )) of the inertia stack
I(X ) is the unweighted point count |X (Fq)/ ∼ | of X over Fq.



How many elliptic curves over k = Fq upto isom?

The inertia stack IM1,1 parametrizes [E ] and automorphism
groups ([E ],Aut[E ]). To keep track of the primitive roots of unity

contained in Fq, define function δ(x) :=

{
1 if x divides q − 1,

0 otherwise.

{M1,1} = L

For the inertia stack IM1,1 for char(k) ̸= 2, 3 is equal to

{IM1,1} = 2L+ δ(6) · 4 + δ(4) · 2
which translates to the following for k = Fq with char(Fq) ̸= 2, 3

{IM1,1} = 2L+ 6, if q ≡ 1 mod 12,

= 2L+ 2, if q ≡ 5 mod 12,

= 2L+ 4, if q ≡ 7 mod 12,

= 2L, if q ≡ 11 mod 12.



The Sharp Enumeration over Rational Function Field

Define height of discriminant ∆ over Fq(t) as ht(∆) := qdeg∆

▶ Elliptic case: Deg(∆) = 12n =⇒ ht(∆) = q12n for n ∈ Z≥0

We consider the counting function N (Fq(t), B) :=∣∣∣{Minimal elliptic curves over P1
Fq

with 0 < ht(∆) ≤ B
}∣∣∣

Theorem (Dori Bejleri–JP–Matthew Satriano; April 2024)

Let char(Fq) > 3 and δ(x) :=

{
1 if x divides q − 1,

0 otherwise.
, then

N (Fq(t), B) = 2

(
q9 − 1

q8 − q7

)
B5/6 − 2B1/6

+ δ(6) · 4
(

q5 − 1

q5 − q4

)
B1/2 + δ(4) · 2

(
q3 − 1

q3 − q2

)
B1/3

+ δ(6) · 4 + δ(4) · 2



Origins of Each Terms in N (Fq(t), B)

▶ 2
(

q9−1
q8−q7

)
B5/6 comes from non-constant µ2 twist families

that are either non-isotrivial or isotrivial with j ̸= ∞

▶ −2B1/6 comes from non-constant µ2 twist families of
generically singular isotrivial elliptic curves with j = ∞

▶ δ(6) · 4
(

q5−1
q5−q4

)
B1/2 comes from non-constant µ6 twist

families of isotrivial elliptic curves with j = 0

▶ δ(4) · 2
(

q3−1
q3−q2

)
B1/3 comes from non-constant µ4 twist

families of isotrivial elliptic curves with j = 1728

▶ δ(6) · 4 comes from constant elliptic curves with j = 0

▶ δ(4) · 2 comes from constant elliptic curves with j = 1728



Geometry of Tate’s Algorithm via Twisted Maps

Here ψ is the associated weighted linear series viewed as a rational
map to M1,1, φ is a twisted morphism from the universal tuning
stack C which induces a stable stack-like model h : Y → C where
g : Y → C is the twisted model via coarse moduli maps, f̂ is a
resolution of Y , and f ′ is the relatively-minimal model obtained by
contracting relative (−1)-curves and f is a Weierstrass model.



Vanishing γ ⇔ Reduction type Θ ⇔ Twisting Γ

Theorem (Dori Bejleri–JP–Matthew Satriano; April 2024)

If char(K ) ̸= 2, 3. Then the twisting condition (r , a) and the order
of vanishing of j at j = ∞ determine the Kodaira fiber type, and
(r , a) is in turn determined by m = min{3ν(a4), 2ν(a6)}.

γ : (ν(a4), ν(a6)) Reduction type with j ∈ M1,1 Γ : (r , a)

(≥ 1, 1) II with j = 0 (6, 1)

(1,≥ 2) III with j = 1728 (4, 1)

(≥ 2, 2) IV with j = 0 (3, 1)

(2, 3) I∗k>0 with j = ∞ (2, 1)

I∗0 with j ̸= 0, 1728

(≥ 3, 3) I∗0 with j = 0 (2, 1)

(2,≥ 4) I∗0 with j = 1728 (2, 1)

(≥ 3, 4) IV∗ with j = 0 (3, 2)

(3,≥ 5) III∗ with j = 1728 (4, 3)

(≥ 4, 5) II∗ with j = 0 (6, 5)



Height Moduli Space on Cyclotomic Stacks

There is a height moduli stack Mn(X ,L) parametrizing all
rational points on general proper polarized cyclotomic stacks of
stacky height n and that the spaces of twisted maps yield a
stratification of Mn(X ,L) corresponding to fixing the local
contributions to the stacky height. The fact that Mn(X ,L) is of
finite type is a geometric incarnation of the Northcott property.

Theorem (Dori Bejleri–JP–Matthew Satriano; April 2024)

Let (X ,L) be a proper polarized cyclotomic stack over a perfect
field k . Fix a smooth projective curve C/k with function field
K = k(C ) and n, d ∈ Q≥0.

1. There exists a separated Deligne–Mumford stack Mn,C (X ,L)
of finite type over k with a quasi-projective coarse space and a
canonical bijection of k-points

Mn,C (X ,L)(k) = {P ∈ X (K ) | htL(P) = n} .



1. There is a finite locally closed stratification⊔
Γ,d

HΓ
d ,C (X ,L)/SΓ → Mn,C (X ,L)

where HΓ
d ,C are moduli spaces of twisted maps and the union

runs over all possible admissible local conditions

Γ = ({r1, a1}, . . . , {rs , as})

and degrees d for a twisted map to (X ,L) satisfying

n = d +
s∑

i=1

ai
ri

and SΓ is a subgroup of the symmetric group on s letters that
permutes the stacky points of the twisted map.

2. Under the bijection in part (1), each k-point of
HΓ

d ,C (X ,L)/SΓ corresponds to a K -point P with the stable
height and local contributions given by

htstL (P) = d

{
δi =

ai
ri

}s

i=1

.



Specializing to the canonical case of M1,1
∼= P(4, 6)

1. The Hodge line bundle L of M1,1 is ν = O(1) on P(4, 6)

2. An elliptic curve E/K is a rational point P ∈ M1,1(K ) which
in turn corresponds to a weighted linear series on K = k(C )
of height n consisting of Weierstrass coefficients
a4 ∈ H0(C ,O(4n)) and a6 ∈ H0(C ,O(6n))

3. The orders of vanishing at a point can be encoded in a vector
γ = (νx(a4), νx(a6)) which corresponds to a certain twisting
data Γ = (r , a) of universal tuning stack, a twisted curve C

4. The spaces Wγ
n,C and HΓ

d ,C can be identified with moduli of
certain canonical models of elliptic surfaces with a specified
fiber of additive bad reduction and the isomorphism between
the two via Tate’s algorithm can be understood in the context
of the minimal model program.



Theorem (JP; July 2025)

For q = 3r , there are 4/6 twists at supersingular j = 0

▶ r is odd :

N (Fq(t), B) = 2

(
q9 − 1

q8 − q7

)
B5/6 − 2B1/6

+ 2

(
q7 − 1

q7 − q6

)
B2/3 − 2

(
q3 − 1

q4 − q3

)
B1/3

▶ r is even :

N (Fq(t), B) = 2

(
q9 − 1

q8 − q7

)
B5/6 − 2B1/6

+ 4

(
q7 − 1

q7 − q6

)
B2/3 − 4

(
q3 − 1

q4 − q3

)
B1/3



Theorem (JP; July 2025)

For q = 2r , there are 3/7 twists at supersingular j = 0

▶ r is odd :

N (Fq(t), B) = 2

(
q9 − 1

q8 − q7

)
B5/6 − 2B1/6

+

(
q8 − 1

q8 − q7

)
B3/4 −

(
q5 − 1

q6 − q5

)
B1/2

− 2q + 4

▶ r is even :

N (Fq(t), B) = 2

(
q9 − 1

q8 − q7

)
B5/6 − 2B1/6

+ 5

(
q8 − 1

q8 − q7

)
B3/4 − 5

(
q5 − 1

q6 − q5

)
B1/2

− 2q + 4



The End.

Thank you for listening!



Projective Elliptic K3 Surface of height n = 2

y2 = x3 + a4(u : v)x + a6(u : v)

Weierstrass data for elliptic fibration on algebraic K3 surface,{
a4(u : v) = −3u4v4,

a6(u : v) = u5v5(u2 + v2).

Then we have ∆ = 4a34 + 27a26 and j = 1728 · 4a34/∆{
∆ = 27u10v10(u − v)2(u + v)2,

j = 1728 · − 4u2v2

(u−v)2(u+v)2
.

Wait, the degree of j-map is 4 and NOT 24. Where did 20 go?

After all, we should have j : P1 → M1,1
∼= P1 of degree 24?

Well, it can get whole lot worse.



Grothendieck ring K0(Stckk) of k-algebraic stacks

Ekedahl in 2009 introduced the Grothendieck ring K0(Stckk) of
algebraic stacks extending the classical Grothendieck ring
K0(Vark) of varieties first defined by Grothendieck in 1964.

Definition

Fix a field k . Then the Grothendieck ring K0(Stckk) of algebraic
stacks of finite type over k all of whose stabilizer group schemes
are affine is an abelian group generated by isomorphism classes of
algebraic stacks {X} modulo relations:

▶ {X} = {Z}+ {X \ Z} for Z ⊂ X a closed substack,

▶ {E} = {X × An} for E a vector bundle of rank n on X .

Multiplication on K0(Stckk) is induced by {X}{Y} := {X × Y}.
A distinguished element L := {A1} is called the Lefschetz motive.

{P1} = L+ 1, {PN} = LN + . . .+ 1, {Gm} = L− 1, {E} = ?



Universal for Additive & Multiplicative Invariants

For any ring R and any function ν̃ : Stckk → R satisfying relations
1) ν̃(X ) = ν̃(Y) whenever X ∼= Y,
2) ν̃(X ) = ν̃(U) + ν̃(X \ U) for U ↪→ X an open immersion,
2) ν̃(X × Y) = ν̃(X ) · ν̃(Y),
there is a unique ring homomorphism ν : K0(Stckk) → R

Stckk
{ }

yy

ν̃

!!

K0(Stckk) ν
// R

Such homomorphism ν are called motivic measures.

∴ When k = Fq, the point counting measure {X} 7→ #q(X ) is a
well-defined ring homomorphism #q : K0(StckFq) → Q giving the
weighted point count #q(X ) of X over Fq.

|PN(Fq)| = qN + . . .+ 1, q + 1− 2
√
q ≤ |E (Fq)| ≤ q + 1 + 2

√
q



Theorem (Dori Bejleri–JP–Matthew Satriano; April 2024){
Wmin

n=1(P(λ⃗))
}
= {PN}(L|λ⃗| − L) + LN+1{P|λ⃗|−N−2}{

Wmin
n≥2(P(λ⃗))

}
= L(n−2)|λ⃗|+N+2(L|λ⃗|−1 − 1){P|λ⃗|−1}

Take |λ⃗| = 10 and N = 1 as M1,1
∼= P(4, 6) over Z [1/6].

1. When n = 1, X is a Rational elliptic surface.

{Wmin
1 }=L11+L10+L9+L8+L7+L6+L5+L4+L3−L

2. When n = 2, X is algebraic K3 surface with elliptic fibration
(i.e., Projective elliptic K3 surface with moduli dim. 18).

{Wmin
2 }=L21+L20+L19+L18+L17+L16+L15+L14+L13−L11−L10−L9−L8−L7−L6−L5−L4−L3

=L(L2−1)(L18+L17+2L16+2L15+3L14+3L13+4L12+4L11+5L10+4L9+4L8+3L7+3L6+2L5+2L4+L3+L2)



Accessing Cruder Level of Topology via Motives

A priori, point counts over Fq shouldn’t know any topology.

In A2
k , cusp singular fiber II and affine line A1 have the same point

counts (motives) i.e. {II = V (y2 = x3)} = L = {A1 = V (x)} but
they have very different topology.

Same motive since we have a stratification of II = X1 ∪ X2 where
X1 = II− {pt} and X2 = {pt} and A1 = Y1 ∪ Y2 where
Y1 = A1 − {pt} and Y2 = {pt}.

Indeed, X1
∼= Y1 (smooth complement) and X2

∼= Y2 (a singular
point is just like a smooth point as Spec(k)) i.e. they are
cut-and-paste equivalent and naturally {II} = {A1} = L

Same for nodal cubic {I1 = V (y2 = x3 + x2)} = L



Different topology since, II and I1 have arithmetic genus 1 (they
are singular elliptic curves) whereas A1 has arithmetic genus 0

Singular point on II is the tip of a cone over the trefoil knot
whereas singular point on I1 is the tip of a cone over the Hopf link.
(Every isolated singularity of a complex curve in a complex surface
can be described topologically as the tip of a cone on a link)

Miracle: When a variety is smooth projective then its point count
over Fq knows topology via Frobenius weights and étale purity (the
finite field analogue of RH) through the Grothendieck-Lefschetz
trace formula under the Weil conjecture framework.



Thinking the other way around, this suggests that we can ignore
finer topology if we are just interested in the arithmetic invariant.

Corollary (Dori Bejleri–JP–Matthew Satriano; April 2024)

The disjoint union of ψn,e

ψn :
n⊔

e=0

Wmin
n−e × P(V 1

e ) → P

(
N⊕
i=0

V
λj
n

)

is an isomorphism after stratifying the source and target.

If we want to point count X one way to do it is to find a
stratification of Y (where we know {X} = {Y } even though
X ≇ Y ) into disjoint union of locally-closed subvarieties where we
can compute its motivic classes and add them up. That is, utilize
cut-and-paste property by stratifying source X and target Y .

Grothendieck ring K0(Stckk) of k-algebraic stacks allows us to this
procedure motivically (free of particular choice of ground field k
and also free of choice of additive invariant on Vark or Stckk)



Motivic Height Zeta Function as Generating Series

Definition

A λ⃗-weighted linear series (L, s0, . . . , sN) is minimal if for each
indeterminacy point x ∈ C , there exists an j such that νx(sj) < λi .

Definition

The motivic height zeta function of P(λ0, . . . , λN) is the formal
power series

Z
λ⃗
(t) :=

∑
n≥0

{
Wmin

n

}
tn ∈ K0(Stck)JtK

where Wmin
n is the space of minimal weighted linear series on P1 of

height n. We also define the variant

IZ
λ⃗
(t) :=

∑
n≥0

{
IWmin

n

}
tn ∈ K0(Stckk)JtK



Stratification on Ambient Projective Stacks

Minimality defect e measures the degree of failure of a weighted
linear series to be minimal (not a rational point of height n).

Definition

Let µ be the normalized base profile. We can divide each part µi
by κ to obtain µi = κqi + ri . We define q(µ) and r(µ) to be the
partitions with parts qi and ri respectively.
The minimality defect of µ is the size of the quotient e = |q(µ)|.

Corollary (Dori Bejleri–JP–Matthew Satriano; April 2024)

The disjoint union of ψn,e

ψn :
n⊔

e=0

Wmin
n−e × P(V 1

e ) → P

(
N⊕
i=0

V
λj
n

)

is an isomorphism after stratifying the source and target.



1. We denote the usual motivic zeta function of P1 by

Z (t) =
∑

{Syme P1}te =
1

(1− Lt)(1− t)

2. We stratify by minimality defect e to obtain an equality{
P

(
N⊕
i=0

V λi
n

)}
=

n∑
e=0

{Wmin
n−e}{Syme P1}

which implies∑
n≥0

{
P

(
N⊕
i=0

V λi
n

)}
tn = Z

λ⃗
(t) · Z (t) (1)

3. Homogeneous polynomials live in compact ambient stack!

∑
n≥0

{
P

(
N⊕
i=0

V λi
n

)}
tn =

{PN}+ LN+1{P|λ⃗|−N−2}t
(1− t)(1− L|λ⃗|t)



Rationality of Motivic Height Zeta Function

Fix weights λ⃗ = (λ0, . . . , λN) and let |λ⃗| : =
∑N

i=0 λi . Suppose for
simplicity that k contains all lcm = lcm(λ0, . . . , λN) roots of unity.

Theorem (Dori Bejleri–JP–Matthew Satriano; April 2024)

For k, λ⃗ as above and C = P1
k , consider Wmin

n and its inertia stack
IWmin

n . We have the following formulas over K0(Stckk).∑
n≥0

{Wmin
n }tn =

1− Lt
1− L|λ⃗|t

(
{PN}+ LN+1{P|λ⃗|−N−2}t

)
∑
n≥0

{IWmin
n }tn =

∑
g∈µlcm(k)

1− Lt
1− L|λ⃗g |t

(
{PNg }+ LNg+1{P|λ⃗g |−Ng−2}t

)
where g runs over the lcm roots of unity and λ⃗g is a subset of λ⃗ of
size Ng + 1 depending explicitly on the order of g .



Motivic Analytic Number Theory Praxis

Moduli of minimal stable E/Fq(t) is L12n = Homn(P1,M1,1)

Theorem (Changho Han–JP)

Grothendieck class in K0(Stckk) with char(k) ̸= 2, 3,

{L12n} = L10n+1 − L10n−1

Weighted point count over Fq with char(Fq) ̸= 2, 3,

#q(L12n) = q10n+1 − q10n−1

Exact number of Fq–isomorphism classes with char(Fq) ̸= 2, 3,

|L12n(Fq)/ ∼ | = #q(IL12n) = 2 · (q10n+1 − q10n−1)

ZFq(t)(B) =

⌊
logqB
12

⌋∑
n=1

|L1,12n(Fq)/ ∼ | = 2 · (q11−q9)
(q10−1)

·
(
B

5
6 − 1

)



Motivic Stability and Arithmetic Distributions

It is natural to ask how many elliptic fibrations realize specific
configurations of singular fibers out of all possible elliptic
fibrations. The “size” of the corresponding moduli spaces can be
quantified through point counts over finite fields and their ratios.

Theorem (Dori Bejleri–JP–Matthew Satriano; April 2024)

Let n ∈ Z≥2 and char(k) ̸= 2, 3. Consider following moduli stacks

▶ Wmin
n of minimal elliptic fibrations over P1

k of height n

▶ WΘ
n of minimal elliptic fibrations over P1

k of height n having
exactly one specified singular fiber of Kodaira type Θ at a
(varying) degree-one place and semistable everywhere else.

Their respective motives in Grothendieck ring K0(Stckk) satisfy



where r(L) is a polynomial of L := {A1
k} depending only on Θ

Reduction type Θ with j ∈ M1,1 r(L)
Ik>0 with j = ∞ L16

II with j = 0 L15

III with j = 1728 L14

IV with j = 0 L13

I∗k>0 with j = ∞ L12 − L11

I∗0 with j ̸= 0, 1728

I∗0 with j = 0, 1728 L11

IV∗ with j = 0 L10

III∗ with j = 1728 L9

II∗ with j = 0 L8



Motives of Moduli Stacks of Elliptic Surfaces

Theorem (Dori Bejleri–JP–Matthew Satriano)

Let char(k) ̸= 2, 3. The motives (modulo {PGL2}) of moduli
stacks W Θ

min,n of minimal Weierstrass fibrations with a single
Kodaira fiber Θ and at worst multiplicative reduction elsewhere is

Reduction type Θ with j ∈ M1,1 |γ| {W Θ
min,n} ∈ K0(StckK )

Ik>0 with j = ∞ 0 L10n−2

II with j = 0 2 L10n−3

III with j = 1728 3 L10n−4

IV with j = 0 4 L10n−5

I∗k>0 with j = ∞ 5 L10n−6 − L10n−7

I∗0 with j ̸= 0, 1728

I∗0 with j = 0, 1728 6 L10n−7

IV∗ with j = 0 7 L10n−8

III∗ with j = 1728 8 L10n−9

II∗ with j = 0 9 L10n−10



Precise proportions of E/K motivated by NT

Theorem (Generic Torsion Freeness; Phillips)

The set of torsion-free elliptic curves over global function fields has
density 1. i.e., ‘Most elliptic curves over K are torsion free’.

Theorem (Boundedness; Tate-Shafarevich & Ulmer)

The ranks of non-constant elliptic curves over Fq(t) are
unbounded (in both the isotrivial and the non-isotrivial cases).



Ulmer’s non-isotrivial elliptic curve of infinite rank

1. Start with y2 + xy = x3 − td , then complete the square via
y = y ′ − x

2 and then complete the cubic via x = x ′ − 1
12 . We

need char(k) ̸= 2, 3 to get to the short Weierstrass form.

2. We get y2 = x3 − 1
48x + 1

864 − td . Coefficients should be
integral thus we take λ = 2 · 3 to multiply λ4 to − 1

48 and λ6

to + 1
864 − td .

3. We arrive at y2 = x3 − 27x + 54− 26 · 36 · td thus
[− 1

48 : 1
864 − td ] = [−27 : 54− 26 · 36 · td ].

4. Remember the isomorphism, for any λ ∈ Gm[
y2 = x3 + Ax + B

] ∼= [y2 = x3 + λ4 · Ax + λ6 · B
]

via x 7→ λ−2 · x and y 7→ λ−3 · y by the Weighted
homogeneous coordinate of P(4, 6).





1. The corresponding elliptic surface has a fiber of Kodaira type
Id at zero (at t = 0), while the fiber at infinity (at 1/t = 0) is
given by the congruence class d of d modulo 6 : (d ,Θ)
(0, I0) (1, II

∗) (2, IV∗) (3, I∗0) (4, IV) (5, II)

2. Outside char 2, 3, there are d fibres of type I1 at the zeroes of
432td − 1 (some of which may be merged if char(k)|d).

By the Shioda-Tate formula and assuming maximal Picard number
of ρ = 10n for Faltings height n (while b2 = 12n − 2), we know
that r = 10n − rk(T ) where T is the trivial lattice. Ulmer’s proof
shows that as the height of Ulmer’s curve goes up as
n = 1 +

⌊
d−1
6

⌋
→ ∞, the algebraic/analytic rank r goes up to ∞.



Sketch of Ulmer’s proof

1. Construct an elliptic surface S → P1 over Fp with generic
fiber E : y2 + xy = x3 − td for d = pn + 1 and n ∈ Z+.

2. Construct (and carefully study) a birational isomorphism
between S and Fd/G , the quotient of a Fermat surface i.e.
V (xd + yd + zd + wd) ⊂ P3 (d = 4 then it is K3 surface).

3. Using the fact that the Tate conjecture for surfaces is known
for Fermat surfaces, one can deduce the Tate conjecture for S .

4. Use the fact that the Tate conjecture for S implies the Birch
and Swinnerton-Dyer conjecture for E . Thus the ranks of the
elliptic curves in the family all equal their analytic ranks.

5. The analytic ranks can be computed by relating the
L-function of E to the zeta function of S , which can be
related to the zeta function of Fd , which is known by Gauss
sum computation of Weil. From this one is able to compute
the analytic rank which is unbounded from below.



General Global Function Field Case

Theorem (Dori Bejleri–Tristan Phillips–Matthew
Satriano–JP; April 2025)

Let n ∈ Z≥2 and char(k) ̸= 2, 3. Consider following moduli stacks

▶ Wmin
n of minimal elliptic fibrations over Ck of height n

▶ WΘ
n of minimal elliptic fibrations over Ck of height n having

exactly one specified singular fiber of Kodaira type Θ at a
(varying) degree-one place and semistable everywhere else.

Their respective weighted point counts satisfy asymptotically

lim
B→∞

NΘ(Fq(C ), B)

Nmin(Fq(C ), B)
= |C (Fq)|

ζC (10)

ζC (2)
· q2

q2 − 1
· κ(Θu)

where κ(Θu) is an explicit ratio in q depending only on type Θ



Reduction type Θ with j ∈ M1,1 κ(Θv )

Ik>0 with j = ∞ q−1
q2

II with j = 0 q−1
q3

III with j = 1728 q−1
q4

IV with j = 0 q−1
q5

I∗k>0 with j = ∞ q−1
q7

I∗0 with j ̸= 0, 1728

I∗0 with j = 0, 1728 q−1
q6

IV∗ with j = 0 q−1
q8

III∗ with j = 1728 q−1
q9

II∗ with j = 0 q−1
q10

We could specialize to the K = Fq(t) case where we know the

exact values of |C (Fq)| ζC (10)ζC (2)
by |P1(Fq)| = q + 1 and

ζP1
Fq
(s) = 1/(1− q−s)(1− q · q−s).


